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EPrya

Despite recent advances in computer hardware, the innovation of new, efficient

numerical algorithms still yields the maximum gain in analyzing problems once thought

to be too large, too difficult, or too expensive to solve. I believe the exponential

characteristic discrete ordinates scheme, developed here in slab geometry, demonstrates

this theme extremely well. Expansion of this scheme to more complex geometries should

produce even more remarkable results.

I would like to thank my advisor, LCDR K. Mathews, Ph.D. for suggesting this

research topic and providing me with background materials and existing computer codes.

His guidance and instinctive numerical methods expertise were essential in completing

this project. Also, my heartfelt gratitude goes to my loving wife Patti, who faithfully

supported me, and to God for granting me the wisdom and patience to finish this project.
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AFIT/GNE/ENP/92M-10

A new discrete ordinates spatial quadrature scheme is presented for solving neutral

particle transport problems. This new scheme, called the exponential characteristic

method, is developed here in slab geometry with isotropic scattering. This method uses a

characteristic integration of the Boltzmann transport equation with an exponential

function as the assumed form of the source distribution, continuous across each spatial

cell. The exponential source function is constructed to globally conserve zeroth and first

spatial source moments and is non-negative. Characteristic integration ensures

non-negative fluxes and flux moments. Numerical testing indicates that convergence of

the exponential characteristic scheme is fourth order in the limit of vanishingly thin cells.

Highly accurate solutions to optically thick problems can result using this scheme

with very coarse meshes. Comparing accuracy and computational cost with existing

spatial quadrature schemes (diamond difference, linear discontinuous, linear

characteristic, linear adaptive, etc.), the exponential characteristic scheme typically

performed best. This scheme is expected to be expandable to two dimensions in a

straight forward manner. Due to the high accuracies achievable using coarse meshes, this

scheme may allow researchers to obtain solutions to transport problems once thought too

large or too difficult to be adequately solved on conventional computer systems.

vii



I. Introduction

Neutral particle transport methods are often used to solve complex problems in

nuclear science and engineering. Several Air Force programs routinely require detail, d

numerical models of neutron and photon transport in nuclear systems, including space

nuclear power reactors and nuclear effects experiments. The innovation of new, more

efficient numerical schemes for solving radiation transport problems can be beneficial,

often providing very accurate results while consuming fewer resources than required by

conventional numerical transport methods. Accurate modeling of neutrons and gamma

rays in a given system can be achieved using a discrete ordinates solution to the

Boltzmann transport equation, which is given below in the general integro-differential

form for neutrons (Lewis and Miller, 1984:34-39):

I -y(-r, f, E, t)+ -V VrC2 Et + r E y ,C ,E,)

s,, (-r L(,, E, t) + 0(d7vC, E)-4(E, CY-, E x~CE, t) (v Jt

w X(E) fdE'vor(7, E')O(7, E', t)
where 4

v = neutron speed

xV = angular neutron flux

= unit vector in direction of particle motion

; = coordinate location in space

E = neutron energy

t = time

a = total macroscopic cross section

s,,, = external neutron source

a, = scattering cross section causing neutrons to arrive in E and 1



X = fission neutron energy distribution function

Va1 = fission neutrons produced

= scalar neutron flux

Functional dependence of each variable is defined in the Boltzmann transport equation

above. The right hand side of the transport equation is often referred to as the source

function S (7, C, E, t), which incorporates the external, scattering, and fission source

terms implicitly. A discrete ordinates solution to equation (1) consists of evaluating this

equation in a number of distinct angular directions over a defined spatial mesh over a

range of defined energy groups. Suitable angular and spatial quadratures are used to

approximate integral particle fluxes, currents, and moments (Lewis and Miller,

1984:116-119).

This thesis introduces a new discrete ordinates spatial quadrature method to solve the

Boltzmann transport equation in slab geometry. This approach, the "exponential

characteristic" (EC) method, assumes an exponential form for the position dependence of

the source function, defined over each cell in a way that preserves the zeroth and first

spatial moments of the source over the cell. Cell edge fluxes and cell flux moments are

obtained by using this exponential source representation in a characteristic integration of

the Boltzmann transport equation.

In addition to having the qualities of positivity, continuity over a cell, and

conservation of zeroth and first spatial source moments, numerical testing has

demonstrated that this new exponential characteristic scheme has other desirable

properties:
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* Fourth order truncation error as aAx -- 0

" Proper solutions to diffusive problems, as tested

" Highly accurate over very coarse meshes

Ultimately, an efficient method that proves to be accurate in one dimension offers the

most utility if easily adaptable to multidimensional coordinate systems so that more

difficult problems might be solved. Based on applications of the exponential

characteristic method in one dimension with isotropic scattering, presented here, this

method should be generalizable to multi-dimensional geomc tries.
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In Section 1H, necessary background information is discussed. The research problem

is formally stated in Section III, with all applicable assumptions and limitations.

Theoretical development of the exponential characteristic method is presented in Section

IV, including methods for converting equations into stable computable forms. This is

followed by computer program development and code validation in Section V. In

Section VI, test results from exponential characteristic solutions to three test cases are

evaluated and compared to other discrete ordinates schemes. Finally, conclusions and

recommendations are given in Section VII, followed by several appendices.
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HI. Background

The transport equation can be solved only numerically for complex real world

applications, e.g., reactor core and shielding problems; therefore, it is essential that any

computer algorithm applied be efficient and accurate to a degree that affords a solution

within a reasonable amount of time and cost. There are, in principle, two approaches to

spatial quadrature discrete ordinates schemes used in solving the Boltzmann transport

equation:

1) Characteristic schemes - based on the known streaming properties of the

transport equation (e.g., an assumed form of the source function)

2) Curve t schemes - based on an assumed form of the flux distribution

function j(7)

Regardless of which approach is used, five desirable properties of spatial quadrature

schemes to 1-.e considered in solving the Boltzmann transport equation are:

1) ccuracy - where there is a small truncation error

2) simplicity - where a small number of numerical operations with unknowns from

a single mesh cell are involved

3) positivity - where positive flux values result from positive sources and positive

entering boundary fluxes

4) Dricl -conservation - where particles are neither created nor destroyed

arbitrarily, with moment balances (e.g. zeroth moment, first moment, etc.) satisfied

up to a given order

5) generalizabiliLy - where the method can be applied to other geometries:

Cartesian, cylindrical, or spherical (Lathrop, 1969:475-477)

5



An additional quality for any scheme, introduced by Larsen, requires that for

problems that are diffusive (absorptions and gradients of the angular flux are small), the

solutions resulting from any given transport method must agree with solutions arrived at

using the neutron diffusion equation. This criteria is defined as the diffusion limit. For

some schemes, satisfying the diffusion limit is a problem, especially when the spatial

mesh is optically thick (Larsen, 1983:90-98). It is difficult for a numerical scheme to

meet all of the above criteria. For most schemes, maintaining positive fluxes throughout

a problem is difficult unless optically thin cells are specified, which can result in very

high computational costs (particularly in two or three space dimensions).

A. Diamond Difference Method

Positivity is sacrificed for simplicity in the implementation of the popular diamond

difference method. Consider a one dimensional slab in the x direction made up of i cells,

where any ith cell has length Ax, (between x - I and xi) with homogeneous material

properties. Diamond difference is a curve fitting scheme where one assumes N(x), is a

linear function across a cell (Lathrop, 1969:482-484). In the case of steady-state,

mono-energetic, non-multiplying, isotropic scattering and sources, Cartesian (slab)

geometry, the Boltzmann transport equation simplifies to (suppressing the subscript i, and

noting implicitly that each angular flux W(x) is along a specific direction cosine t):

dvIm(x)

" dx +cm (x)=s(x) (2)

where the source function is

s(x) = cO(x) + s",(x). (3)

The scattering ratio in equation (3) is defined as
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C=- (4)

The scalar flux O(x) for any spatial quadrature method, defined as the angular flux

integrated over all angles, is given in slab geometry over all direction cosines p. between

-1 and 1 (corresponding to all angles between 7r and 0 radians, respectively) by

O = fI(x, ) (5)

Using the discrete ordinates method, the scalar flux is approximated by

1MO(x)=- W, w.W (6)
2

m=

where M angular fluxes are evaluated at M discrete ordinates g.m. Each direction cosine

is from a quadrature set (win, .). The eight direction cosines from an eight-point single

range (S.) Gauss-Legendre quadrature set, used for all computations in this thesis, are

provided in Appendix A.

Equation (2) can be integrated over a single spatial (mesh) cell, with this cell defined

locally between 0 and Ax. When p > 0, then particles flow from left to right, and

W(0) = WL at x = 0 and W(Ax) = WIR at x = Ax (Note that L=Left, R=Right, and

A=Average). This results in the zeroth moment balance equation:

(WR - WL) + cA WA = SAAx (7)

where the cell average source function and flux are

SA = -f s(x)dx (8)

and

7



WA = ' f(x)dx (9)

A single spatial cell is shown in Figure 1.

A

0 XAx
Slab Geometry

Figure 1. A Single Spatial Cell

The diamond difference method approximates equation (9), the cell average angular

flux xVA (called the zeroth moment of the angular flux) by the arithmetic average of the

left and right boundary fluxes,

I
WVA = 2 (WL + WR) (10)

This is the fundamental assumption of the diamond difference method. Since xVL and SA

are either given from an initial guess or are available from a previous iteration, the basic

diamond difference equation is obtained by combining equations (7) and (10):

r-e ( 2 fSAA

where the angular optical thickness, in mean free paths, is defined as
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E ""X(12)

Ideally, the diamond difference method yields reasonable results and second order

convergence in the limit of optically thin cells, where aAx ---> 0 (Lewis and Miller,

1984:132). However, even if AVL and SA are both positive, a negative angular flux is

possible on the right cell boundary if the optical thickness is greater than two. Negative

fluxes can occur even when the cell thickness Ax is small, because the cross section cy can

be large, and the direction cosine I can be small. In reality, negative fluxes have no

physical meaning. In addition to the doubt negative fluxes cast on the usefulness of

results, they can propagate unfavorably through a problem.

This can be treated by using a negative flux fixup, where if R < 0, then it is set to

zero. The zeroth moment balance, equation (7), is then solved for AVA. While practical,

these fixups can cause undamped oscillations among successive iterations, interfering

with or even preventing convergence (Alcouffe, et al., 1979:111-115). In addition,

negative flux fixups increase the truncation error of results, can cause failures in diffusion

acceleration procedures, and can ultimately lead to incorrect solutions (Lathrop,

1969:475).

B. Other Satial Quadratur Schemes

Following a wide use of the diamond difference method to solve transport problems

(in spite of its inherent limitations), many researchers sought to develop alternative

spatial quadrature schemes. In general, other methods that try to overcome the

difficulties of diamond difference are less straight forward. Nevertheless, while some of

these schemes are more intricate to encode, many achieve more accurate results than

9



diamond difference over a coarser spatial mesh. Therefore, although some alternative

methods require increased computational effort per cell compared to diamond difference,

the use of a coarser mesh usually lowers overall computation times and memory storage

requirements (This is particularly important in two and three dimensional geometries).

Some alternatives to diamond difference are listed in Table 1.

Table 1
Alternative Spatial Quadrature Schemes in Discrete Ordinates

1. (SC) Step Characteristic (Lathrop, 1969)
2. (LD) Linear Discontinuous (Hill, 1975)
3. (EM) Exponential Method (Barbucci, et al., 1977)
4. (LC) Linear Characteristic' (Alcouffe, et al., 1979)
5. (LN) Linear Nodal" (Walters, et al., 1981)
6. (LNA) Augmented Linear Nodal (Walters, 1986)
7. (SGF) Spectral Green's Function (DeBarros, et al., 1990)
8. (SA) Step Adaptive (Mathews, 1990)
9. (LA) Linear Adaptive (Mathews, 1990)
10. (MB) Multiple Balance (Morel, et al., 1990)

'Linear Nodal is identical to Linear Characteristic in slab geometry

Although most are improvements to diamond difference, each method in Table 1 has

distinct advantages and disadvantages. Detailed descriptions of each scheme can be

found in the literature. Some of the schemes listed in Table 1 are briefly mentioned here;

others are left for discussion in later sections and will aid in the development of the

exponential characteristic method.

The linear discontinuous (LD) method was developed in an attempt to diminish the

number of negative flux fixups required by the diamond difference method. The

fundamental assumption used in the LD method is that V is piecewise linear in x, but is

discontinuous on each left (entering) cell boundary for gi > 0, and discontinuous on each

right (entering) cell boundary if gI < 0. Similarly, the source is also taken to be piecewise

10



linear. These piecewise representations for the angular flux and source terms are

introduced into zeroth and first spatial moments of the transport equation. This generates

two equations solvable for two unknowns, the unknowns being the two discontinuous

values of angular fluxes at a cell edge. The LD method is considered to be a near

positive method, producing fewer negative fluxes than the diamond difference scheme for

a given problem. Although negative fluxes can result, the linear discontinuous scheme

does not invoke a fixup and achieves second order convergence in the limit of thin cells.

The linear discontinuous scheme is algebraically equivalent to the linear nodal scheme if

a Pade' (1,2) approximation is used for the exponential function in linear nodal. Because

the LD scheme continues to be widely implemented in transport codes, it is used to aid in

evaluating the performance of the exponential characteristic method (Hill, 1975),

(Alcouffe, et al., 1979:117-118), and (Walters, 1981:115).

Of particular note is the exponential method (EM), developed by Barbucci and

DiPasquantonio in 1977 (not to be confused with the exponential characteristic scheme

developed in this effort). Recall that the diamond difference method, referring to

equation (10), assumes the cell average angular flux is the arithmetic mean of the

entering and exiting fluxes. Similarly, the exponential method, also a curve-fitting

scheme, assumes the cell average flux is the geometric mean of entering and exiting

fluxes, which results in an exponential functional form for all angular fluxes. This

method, while positive, has fundamental difficulties in source regions and near vacuum

boundaries. In addition, exact solutions are always overestimated, even in the limit of

thin cells (Barbucci, et al., 1977). Because of these difficulties, no comparisons with the

exponential method are made.

11



In slab geometry, there are no real differences between the linear characteristic

method (LC) (discussed in a later section) and the linear nodal (LN) method, except in

the implementation of a fixup (the reader is referred to the literature for treatment in other

geometries). The LN method actuates a fixup if the magnitude of the first moment of the

scalar flux exceeds that of the scalar flux zeroth moment, while the LC method

implements a fixup based on the magnitudes of the source moments. In the limit of thin

cells, LC and LN are equivalent in slab geometry. The augmented linear nodal scheme

(LNA) implements the diamond difference relation for specific terms in two and

three-dimensional moment balance equations to increase computational efficiency (with a

small penalty in accuracy). In any case, the LNA method is not always positive, and a

fixup is still required (Walters, et al., 1981), (Alcouffe, et al., 1979), and (Walters, 1986).

Because LN is equivalent to LC in slab geometry, no other reference to it is made.

Furthermore, as the LNA scheme is neither absolutely positive nor as accurate as the

original LN scheme, it is not discussed further.

The spectral Green's function method (SGF) has no spatial truncation error in slab

geometry. In addition to using the standard transport balance equations, it implements a

non-standard Green's function for VA, which affords an exact solution in slab geometry.

In slab geometry, this method requires significantly more computer memory than most

other schemes. Furthermore, the method does not appear to be extensible to other

geometries (De Barros, et al., 1990). For these reasons, the SGF method is not

considered for comparison to the EC scheme.

Multiple balance (MB) is a curve fitting scheme that uses the Boltzmann transport

equation as the principle balance equation and auxiliary balance equations restricted to

coupled half-cell domains. The MB method employs a Pade'(0,2) approximation to the

exponential functi'in. While this scheme has many desirable properties, it requires

12



computations over cell sub-domains, is limited to second order, and is not always positive

when scattering is present in a given region (Morel, et al., 1990). Therefore, no

performance comparison between multiple balance and exponential characteristic is

made.

C. Characteristic Schemes

i. Characteristic Method

The step characteristic (SC) method uses a characteristic integration of the transport

equation, which assumes the source function takes the form of a step value s(x) = SA in

each cell. Thus, analytically integrating equation (2) along each characteristic direction

(constant t) yields solutions for the flux distribution and zeroth moment. This method is

simple, positive, and conserves zeroth moments, but is difficult to generalize in

multidimensional geometries. Also, this method demonstrates less than second order

truncation error as cells become optically thin (oAx -* 0) (Lathrop, 1969:475).

ii. Linear Characteristic Method

The linear characteristic method is a logical extension of the step characteristic

method. Instead of approximating the source function as a step value throughout a cell,

this method uses a linear approximation of the source function in a characteristic

integration of the transport equation:

s(x) = SAPO(X) + SA(x) (13)

13



where the zeroth and first moments of the source function are SA and Sx, respectively,

and P0 and P are Legendre polynomials. These moments are initially obtained by

integrating the product of true source function and the zeroth and first order Legendre

polynomials. The true source function, as given in equation (3), is:

s(x) = c(O(x) + s (x) (3)

The Legendre polynomials P0 and P1, defined so as to be orthogonal over the interval

0_x <Ax, are:

POW) = 1 (14)

F0A) = (Axi~ (15)

Integration is carried out using equations (3), (14), and (15) according to

SA = - s (x)Po(x)dx (16)

Sr = " s(x)PI(x)dx (17)

These result in

= C OA +S xA (18)

Sx = c0Oa + S ,i (19)

14



Now substituting the linear approximation for s(x) from equation (13) into the

transport equation (equation (2)) and integrating analytically yields a solution for the

angular flux distribution in the cell (where W(O) = WL is the left entering flux for a

specified pi > 0):

4(x)= VLexPo I - (exp[x (20)

+S2A I-exj---1  ) S.2x

Evaluating this equation at x = Ax yields the right boundary angular flux WR . Integration

of equation (20) can be performed to obtain the zeroth and first angular flux moments

using

WVA -f v(x)P(x)dx (21)
Ax o

W, = f W(x)P (.x)dx (22)

The expressions for OA and 0., in the zeroth and first source moments (equations (18) and

(19)), are actually the angular flux moments integrated over all angles (in slab geometry)

according to:

OPA = A (I) 1 (23)

O= f 'v(i4) (24)

15



Naturally all angular flux integrations are performed numerically using the selected

angular quadrature set under the discrete ordinates approximation (see equations (5) and

(6)).

Iteration Sequence in LC Quadrature

Proceed with . Obtain Obtain

Initial Guess S S x Y 4A xA X

or Iteration (18) and (19) (20) (21) (22)

YES

Report Final
Results

and STOP

Converged? Yields Cell Apply Angular

Test cells for 0th,lst Scalar Quadrature
Convergence Flux Moments (23) and (24)

Figure 2. Iteration Sequence in Linear Characteristic Spatial Quadrature

A schematic of the progression from iteration to iteration in linear characteristic

spatial quadrature is given in Figure 2. Since the source moments are either known from

an initial guess or can be evaluated from a previous iteration, these yield new fluxes and

flux moments, which provide new source moments for each cell. This process continues

until convergence is achieved to a specified tolerance. Logically, this process is often

referred to as fixed point iteration of the source-scattering term.

16



If I Sj > SA, which can occur when cells are optically thick, the linear source

distribution equation (13) is negative at one end. To preserve positivity, a negative

source fixup, also known as a rotational fixup, is required. This source fixup restricts the

absolute value of S. so that it is never larger than the zeroth source moment SA. While

this fixup insures positive sources (and hence positive fluxes), it violates first spatial

moment conservation of the Boltzmann transport equation (and forces truncation error to

increase). This, in turn, can cause numerical diffusion; particles are spatially shifted and

can appear where they should not. The extent to which numerical diffusion occurs in LC

depends on the impact of limiting the magnitude of S. In short, this source fixup can

introduce problems analogous to those caused by negative flux fixups in the diamond

difference method.

If the rotational fixup is never used, the linear characteristic method globally

conserves the zeroth and first spatial moments of the Boltzmann transport equation. The

zeroth spatial moment balance equation in slab geometry, the same balance equation used

in the diamond difference approximation (equation (7)), is

(WR - VL) + ,aAxA = SAAr (25)

The first spatial moment balance equation is

3p(V - 2VA + WR) + oAx = SAx (26)

These moment balances of the Boltzmann transport equation are easily derived by

integrating equation (2) multiplied by the properly normalized zeroth and first order

Legendre functions, equations (14) and (15), between the limits 0 and Ar. Over coarse

meshes, the linear characteristic method is second order. In the limit of vanishingly thin

cells, truncation of the LC method is at least third order (Alcouffe, et al., 1979:111-127).

17



In spite of potentially requiring a fixup in some cells (depending upon the problem),

the linear characteristic method has produced better results than the diamond difference,

linear discontinuous, exponential, and step characteristic methods in several test cases

(Alcouffe, et al., 1979:126-127). In addition, it satisfies the correct diffusion limit

(Larsen, 1983:90). Therefore, LC remains a worthy scheme with which to compare.

D. Adaptive Schemes

Mathews recently developed two methods, step adaptive (SA) and linear adaptive

(LA) (Mathews, 1990:419-457). These are logical improvements to the step and linear

characteristic methods, respectively. These new adaptive methods differ from earlier

schemes in that source functions are strictly positive throughout the cell and require no

rotational fixup. This is accomplished by partitioning the domain of each cell into

smaller sub-domains. The source function is represented by different functions over each

sub-domain. The operative "adaptive" for these schemes refers to the precise partitioning

of the sub-domains in a way that forces the source representation to conserve 0th and 1st

moments in a spatial cell. Hence, the source representation is determined by a moments

matching process. Due to the intrinsic positivity of this method, no fixups are required,

and zeroth and first moments of sources and flux distributions are always conserved, as

are the balance equations (equations (25) and (26)). Note that these methods, while

positive, are non-linear. This non-linearity has not been observed to interfere with

convergence of the scattering iteration.

Not surprisingly, Mathews found SA and LA to be in excellent agreement with

conventional methods in test problems with thin cells. However, when thick cells were
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used, these adaptive schemes formidably outperformed the other methods. Truncation

errors of third and fourth order are realized in the limit of very thin cells with SA and LA,

respectively.

i. kU Adaptive Method

In the step adaptive method, a step function approximates the source function over a

portion of the domain, and is truncated to zero in the remainder. The location of the

truncation is dependent on the magnitudes of the zeroth and first moments and by the

sign of the first moment.

For example, if S > 0, then

s(x) =0 0_<x < pAx (27)

SW-SA pAx < x 5 A (28)(I -p)

where

I S,1 0i P < 1 (29)
-( 3SA)

If S, < 0, then

s( -P 0<x <(1 -p)A (30)

s(x)=0 (1 -p)Ax <x <A (31)
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ii. Linear Adaptive Method

The linear adaptive method works in a manner similar to SA, but is more accurate. If

IS[ < SA, then s(x) takes the form of equation (13), as in the LC method. However, if

S, > SA, then s(x) is set to zero from the left edge of the cell, up to a distance (1 - ")Ax,

where t = 3(1 - p)/2. From this point, it rises linearly to a maximum at the right edge. A

mirror image of this is used if S, < -(SA). This insures the source function is continuous,

positive, and piecewise linear in the cell; again, zeroth and first moments are conserved.

In the limit of vanishingly thin cells in slab geometry, the linear adaptive method is

equivalent to the linear characteristic method (Mathews, 1990:419-457).

E. Merits i~f an Exponential Characteristic Method

The true power of the step and linear adaptive schemes is in their ability to retain

accuracy, positivity, and conservation with coarse meshes. This suggests the possibility

of solving complex transport problems once thought too large or costly for conventional

computer systems. One potential difficulty in using SA and LA involves adapting the

source function to match moments over a sub-domain. If posed with a problem with

strong and weak fluxes appearing at opposite boundaries of a given cell and I Sj > SA, the

adapted source function is preferentially biased to de-emphasize the weak boundary flux,

while the strong boundary flux is over-emphasized. An additional obstacle in SA and LA

is simply the added complexity of using a piecewise source representation in

sub-domains across a mesh cell. Depending on the problem being solved, use of

sub-domains can require more floating point operations than might be necessary for a

new method that uses a continuous source representation across an entire cell. (Use of

sub-domains are also more difficult to treat in two or three space dimensions).
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Still, any newly proposed cell-continuous source function must provide results that

retain the features of accuracy, positivity, and conservation of at least zeroth and first

moments (even over a coarse mesh). One source function that satisfies all these

requirements is the exponential function

s(x) = aexp[bx] (32)

where a and b are constants to be chosen so as to conserve the zeroth and first spatial

moments (i.e. to match the specified moments, SA and Sx, from the outer iteration). This

scheme is called the exponential characteristic (EC) method. While the constants in the

source function in equation (32) are defined by moments matching similar to that used for

SA and LA, the exponential characteristic method is not an adaptive scheme; it will not

use sub-domains across a spatial cell. An added feature of this source function is its

similarity to particle distributions in strongly absorbing media. Like the SA and LA

schemes, the EC method is non-linear (as in schemes which use a fixup), and therefore

does not preserve the linearity of the transport equation in the sense of the super-position

of solutions.
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III. Problem

The problem addressed here is the theoretical development, computer program

implementation, validation, testing, and evaluation of a discrete ordinates exponential

characteristic spatial quadrature scheme to numerically solve the Boltzmann transport

equation. The EC method is evaluated based on a comparison of numerical results to

results from other spatial quadrature schemes.

A. &M.0

The "exponential characteristic" method is derived using a characteristic integration

of the Boltzmann transport equation with an exponential function as the assumed form of

the source distribution. Although the method derived here could be implemented more

generally, for simplicity of programming, the implementation and testing performed here

is restricted to the conditions stated in Table 2.

Table 2
Conditions Used in Testing the EC Method

1. Steady State
2. Mono-Energetic
3. Non-Multiplying
4. Isotropic Scattering and Sources
in the Laboratory System
5. Slab Geometry

Validation and testing of the EC scheme is performed using test cases with multiple

regions containing combinations of scattering and absorbing media. In each case.

conservation of zeroth and first spatial moments is numerically verified using the balance
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equations (equations (25) and (26)). In addition, an overall scalar balance equation (the

steady state Boltzmann equation integrated over all angles) is also numerically verified.

This overall balance equation is, in slab geometry,

JX(Ax) -J() + oAxOA = SAAx (33)

where

J(Ax) = net current at right cell boundary

J(0) = net current at left cell boundary

a = total macroscopic cross section

Ax = measured cell width

OA = scalar flux zeroth moment

SA = source function zeroth moment

Note that the boundary currents J_(Ax) and Jx(O) are given in slab geometry by

C dp. MJx(Am)= W Y -)-N 9- m (AT) (34)

and

+_1l O~a dga m
JM(0) Y- ,.K,.W.(0) (35)

As before, all angular integrations are carried out using the discrete ordinates

approximation.
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Evaluation of the performance of the exponential characteristic method is, for any

given test prob!em, achieved by comparing numerical results obtained from the EC

method with results obtained from conventional spatial quadrature schemes in slab

geometry. Comparisons are made among the schemes listed in Table 3.

Table 3
Spatial Quadrature Schemes Used in Test Problems

(EC) Exponential Characteristic
(DD) Diamond Difference
(DDF) Diamond Difference with Fixup
(LD) Linear Discontinuous
(LC) Linear Characteristic
(SA) Step Adaptive
(LA) Linear Adaptive

A relative convergence tolerance of 10-5 using Gauss-Legendre angular quadrature with

eight direction cosines (S8) is used to solve all problems. Only a numerical comparison of

results is provided; no rigorous mathematical proof of the efficiency of the EC scheme

versus other schemes is made.

Because equations (25), (26), and (33) are numerically verified for each quadrature

scheme, including exponential characteristic, a check on all angular and scalar quantities

is available. If numerical rounding errors or catastrophic cancellations have degraded

solutions, this is immediately obvious from the inspection of the relative maximum

differences in these balance equations. (Note that the first spatial moment balance

equation (26) is not used for DD or DDF).
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B. Error Norm and Error Treatment

For easy interpretation and evaluation of results, the error norm given by Mathews as

Err (approx) I approx - exactl

(lapproxI - I exactl )/2 (36)

is used throughout all studies to compare all cell edge fluxes, currents, and region

moments, as appropriate. In addition, this same norm is used to compare balance

equations (25), (26), and (33) for each quadrature scheme during computer execution,

where the right and left hand sides of these equations are taken to be approx and exact,

respectively. While many authors have used slightly different error norms, this norm is

stable for zero or negative results, and approaches a conventional relative error estimate

when the approximate value is close to the exact value (Mathews, 1990:446). By

inspection, it is clear that the maximum value produced by this error norm is two.

Average and maximum observed errors are determined using error values computed

from equation (36). An average pointwise relative error Q provides a measure of the

accuracy of all computed values over an entire problem, and is given by

I N
Q=-- Err (approx)n (37)

where N values for all fluxes, currents, etc, are computed for a given spatial quadrature

method. The maximum observed error is the maximum relative error observed in any

quantity for a given solution to a problem; therefore, it provides a "worst case"

calculation error for a spatial quadrature method used to solve the problem.

As for the "exact" numerical solution from which errors are computed in equation

(36), this is the reference solution obtained using the linear characteristic method with a
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very fine spatial mesh (where further refinement of the mesh yielded no discernable

change in the numerical answer). Unless otherwise stated, a relative tolerance of 105 is

always used for convergence.

C. Computational Efficiency and t

In defining computational efficiency, an operational definition analogous to that

stated by Alcouffe, et al., is used. This holds that one method is more computationally

efficient than another if, for the same relative cost, the first method produces a more

accurate solution (Alcouffe, et al., 1979:113). Here, the relative cost in solving any test

case is determined by the size of the spatial mesh and the execution time required for

each spatial quadrature method to reach a converged solution. Criteria for convergence is

a comparison of scalar fluxes in all cells computed before and after the last iteration. If

the relative change (using equation (36)) in these scalar fluxes is no larger than 10-5 , then

the convergence test is satisfied.

The average error equation (37) is used to determine a mesh size ratio, or MSR. The

MSR is defined as

MS=[Cells (Q )x
MSR=[ Czzls(Q) (38)

where

Cells(Q)7 = number of cells required to achieve an average error Q using
spatial quadrature scheme XX

Cells (Q)Ec = number of cells required to achieve an average error Q using the
EC scheme

XX = DD, DDF, LD, LC, SA, or LA as in Table 3.
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Another useful ratio is the execution time ratio, or ETR. This is defined as

[ Exec Time (Cells (Q ))( 1
ETR= Exec Time (Cells (Q))c(39)

where

Exec Timexx = execution time required for method XX to achieve convergence
using Cells (Q)xx

ExecTimeEC = execution time required for the EC method to achieve
convergence using Cells (Q )Ec

XX = DD, DDF, LD, LC, SA, or LA as in Table 3.

Memory storage requirements are proportional to the number of mesh cells needed to

achieve a specified error, and computational effort is related to the execution time

necessary for convergence using the number of cells designated. Thus, while the average

pointwise error Q provides a measure of overall solution accuracy, the MSR and ETR

provide a comparison of memory storage requirements and computational effort,

respectively, for any method XX against the memory storage and computational effort

required for EC. The higher the value of either the MSR or ETR above unity, the greater

the benefit from using the exponential characteristic scheme. A mesh cell ratio or

execution time ratio less than unity for a given method indicates fewer cells or a shorter

execution time, respectively, than for EC.

D. Source Iterations

Two approaches to the numerical iteration of the source function are used in the

study of each test case. The first approach is a fixed point iteration of the source

function, where scalar flux moments are updated between each iteration to provide zeroth
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and first source moments (see Section II.C.ii). The second approach is the method of

successive scatters. Iteration using successive scatters differs from fixed point iteration

in that any external sources and incident currents present are used to inject a flood of

neutrons into the system during the first iteration only; this yields the first flight flux.

Subsequent iterations deal only with the scattered components of this first flight flux.

Initially, the source term is

s(x) = S"'(X) (40)

For the second iteration and thereafter, the source term is

s (x) = cGORFigh,(x) (41)

where 4)Fhg,(X) is the scalar flux generated from scattering by the previous flight. As the

scattering process continues, running sums of all fluxes and currents are accumulated

until the scattered particle fluxes become negligible and convergence is achieved.

The treatment of the source function in successive scatters (given by equations (40)

and (41)) differs from the fixed point iteration source term, which always includes

components from both external sources and scatters, as in equation (3). Since all

problems treated here are time independent, either method provides essentially the same

solution. However, the method of successive scatters can be more accurate for a given

mesh size. Because the external source term often dominates the source function in fixed

point iteration, contributions from scattered radiation can be masked; this does not occur

in successive scatters, as only scattering from a previous flight contributes to the source

term (and thus to source moments for each iteration). This affects the accuracy of a

solution, to an extent that depends on the spatial quadrature scheme used. This is

demonstrated in a later section.
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E. Programmin

The exponential characteristic method is augmented into a slab geometry discrete

ordinates computer code that has the capability of executing all other required spatial

quadrature schemes. Programs were written in MicroSoft QuickBASIC 4.5 for execution

on an IBM or compatible personal computer.
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IV. Theoretical Development

The exponential characteristic method is derived in a manner very similar to that used

for the linear characteristic method, except that the assumed form of the source function

is an exponential. Again, a characteristic integration is performed over a single spatial

cell, as in Figure 1.

A. Flux Distributions

Recalling the steady-state, one energy, transport equation in slab geometry (equation

(2)):

dll,,,(x )dx +Gmw"l(x) =(x) (2)

Assume the isotropic source function for the exponential characteristic method has the

form of equation (32):

s (x) = aexp[bx] (32)

Recall that a and b are to be determined by zeroth and first source moment matching.

Integrating equation (2) by integrating factor along a direction cosine I, and noting that at

the left hand boundary, y(O) = VL, results in

)=Lex[ +x x s x (42)

Substituting equation (32) into equation (42) and carrying out the integration yields an

expression for the angular flux distribution in a cell,
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Since xVR is defined as (Ax), evaluating equation (43) at x = Ax yields the angular flux at

the right cell boundary:

xR= WL ex - ] + (ba exp[bAx] - exp (44)

B. flux Moments

As mentioned, a requirement imposed on the exponential characteristic scheme is

that zeroth and first moments are to be globally conserved. The zeroth angular flux

moment, recalling equation (21), is

WA =- I f(x)Po(x)dx (21)

Substituting equation (43) into this equation and integrating yields the simplified zeroth

angular flux moment:

VA -- L(1-expL[-A ])+ -a (I -exp[bAx])

-(ba ot p exp[b Av] exi - x

(b p + Y)FAV')yeP *[ jj

Similarly, making use of equation (22) and again substituting equation (43) yields the

angular flux first moment equation:
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( b+exp[-Ax2)+ (1 -exp[bAx])K aAx ) b&yA 2

3 a ( x~ b A ) +- a g ( -exp [b ] _ A:( 6

.( (b G+A- ) 2
-6 g) 2  ex~ xj- x -~

4 (bgj cyt LA.,(

C. Sourc Moments

Maintaining the requirement that source moments be conserved, the zeroth source

moment is defined as given in equation (16):

SA = -f s (x)Po(x)dx (16)

Substituting equation (32) into this equation yields a relationship between a, b, and SA:

a

SA = a (exp[bA] - 1) (47)
bAx

Again, the first source moment is defined as in equation (17),

SX =-- foas(xx)P'(x)dx (17)

and substituting equation (32) here yields a relationship between a, b, and Sx:

b'=b2  IJ.x(exp[b&]+ 1)+2(1 -expbAfl)] (48)
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To verify the expressions for the moments of all fluxes and sources, equations (44) to

(48) were substituted into the balance equations (25) and (26) to yield mathematical

identities.

D. Method

SA and S, are both known either as an initial guess or as evaluated from the previous

iteration. The equations for SA are as derived for the linear characteristic method.

Recalling equation (18) (where c is given in equation (4)):

SA - C O4 A + SXtA (18)

the zeroth scalar flux momet, using equations (21), (23), and the discrete ordinates

approximation, is

21 m4A-2=I 14mA (49)

The external zeroth source moment is also defined as in the LC method:

SA = I s,,(x )P0 (x )dx (50)

Note that the value specified for an external source in a region for any test case is

assumed to be the zeroth external source moment (average value of the source in the

region), regardless of the spatial quadrature method. The first external source moment is,

for the problems tested here, assumed to be zero. The corresponding equations defining

S, are, recalling equations (19), (22), and (24), again using the discrete ordinates

approximation
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Sx =cXxGO., +xSx (19)

IM
0m1=- X (51)

2.=i

S,,= 'fSx,(x)P(x)dx (52)

The Legendre functions are as in equations (14) and (15). A schematic of the progression

from iteration to iteration in exponential characteristic spatial quadrature is given in

Figure 3.

Iteration Sequence in EC Quadrature

Proceed with Obtain Root Solve

Initial Guess S[A Sx for a,b using
or Iteration (18) and (19) (47) and (48)

NO_ _

Test cells for YES Report Final

Convergence 1 > Results
using (36) and STOP

Yields Cell Apply Angular Obtain
Oth,lst Scalar Quadrature YRJ YA 'x
Flux Moments (49) and (51) (44) (45) (46)

Figure 3. Iteration Sequence in Exponential Characteristic Spatial Quadrature
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In each iteration, SA and S. are computed from equations (18) and (19), and

coefficients a and b are determined by root solving the source moment relationships

given in equations (47) and (48). Values for flux moments and fluxes are then computed

using equations (44), (45), and (46). This process continues over all directions and cells

until a converged solution is reached. Since the source function is never negative, no

fixups are required, and the EC method globally conserves zeroth and first spatial

moments. Because of this, the balance equations given in equations (25) and (26) are

satisfied in each cell for each discrete ordinate. In view of this, the overall balance,

equation (33), must also be satisfied. This is true unless numerical rounding errors,

catastrophic cancellations (overflows/underflows), or use of numerical formulations that

are ill-conditioned compromise the solutions.

E. Conversio IQ Comutable Forms

The equations derived for the exponential characteristic method are not, in all cases,

numerically stable. For example, consider equation (44), the angular flux on the right

boundary.

xVR= NiL exp[ --AT + a exp[bAx] -exp (44)

When the constant b is zero or negative, the second term in equation (44) can become

unstable. By inspection, similar difficulties are evident in the flux and source moment

expressions presented in the previous section. The conversion of each equation to a

compact, computable form is necessary to insure that any iteration procedure is sound.
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i. Walters Functions

Walters introduced a recursive set of exponential functions that implicitly occur often

in solutions to the Boltzmann transport equation (Walters, 1981:115 and 1986:192-196).

The first three of these expressions, used by Mathews with a lower case "p" (to avoid

confusion with Legendre polynomials), with z 0 are

NOz)=1 -exp(-z)

P(Z) PO (54)
z

1 - po(z)
p1(z) - (54)

1 - 2pl(z)
p2(z) 2p- z (55)

Z

Terms where n I 1 can be summarized by the general Walters function forward iteration

formula

1 -np,,_l(z)
p,,( ) - (56)

Taking the limit as the argument of equation (56) approaches zero yields a general

expression to be used when z =0:

1
P() +1 (57)

Equations (53), (54), and (55) are plotted in Figure 4, along with 1/z and exp(-z), with

z > 0. for comparison.
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< - p2(z)

: \: exp(-)
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Figure 4. Functions li/z, exp(-z), and Walters Functions p0(z), p1 (z), and p2(z)

As described by Mathews, when z > n, equation (56) can accurately be used to

successively compute the next higher term, up to the level required in a computation.

Again, this is known as forward iteration. If z < n, the forward iteration process becomes

increasingly less accurate, losing precision with each iteration. To overcome this,

Mathews suggests that backward iteration should be performed by rearranging equation

(56), so that

1 -zp,,(z)
p .,(z) - -- (58)

which is the form for backward iteration. Remarkably, if n is commenced at a high

enough value, wy initial guess in [0,1] can be used to begin the backward iteration

procedure, whereupon an exact solution for the Walters function can result. The worse

the initial guess, the higher the order n must be (Mathews, 1990:431-432). The error of
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any initial guess p,,0 can be no greater than the value of the initial guess if we use

1/(2(n, + 1)) as the initial guess (since 1/(n, + 1) >_ () > 0 for f > 0). Fnr a Walters

backward iteration scheme that begins at no, the absolute error in the nth Walters function

using backward iteration is

AbsErrp(z) "o - n  (59)
no!

and the relative error is

AbsErrp,.(z)
Errp, (z) - (60)

Exactp,(z)

A relative error of less than 2.0 x 10- 17 can be realized for n = Oto3 in backward iteration

if p27(Z) = 1/56 is used as an initial guess for no = 27.

For all transport calculations treated here, the highest order Walters functions required

for any of the candidate methods in Table 3 is p3(z). If the truncated integer portion of z

minus one is less than or equal to three, backward iteration is implemented until the order

of the Walters function n is equal to the truncated integer part of z. Forward iteration is

used thereafter or when the truncated integer part of z minus one exceeds three. For

example, suppose z = 2.5. The truncated integer portion of z less one is 1 (the truncated

integer portion of 2.5 is 2). Since 1 < 3, then backward iteration is used to compute

p3(2.5) and p 2(2.5), and forward iteration is used to compute po( 2 .5) and p.(2 .5).

("Walters" functions are used for all the methods except DD and LD. The linear

discontinuous scheme is algebraically equivalent to the linear nodal (and hence linear

characteristic) scheme when a Pade' (1,2) approximation exp(-x) = (6 - 2x)/(6 + x (x + 4))

is used in linear nodal; this Pade' approximation is implemented when LD is executed,

and therefore use of Walters functions is not necessary).
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If negative arguments are placed into the Walters functions, values begin to increase

exponentially, and vital digits can be lost in successive calculations of large positive

numbers. To avoid this, the original Waiters functions are easily transformed to better

accommodate negative arguments using combinations of the original Walters functions to

any order desired. The transformations for equations (53), (54), and (55) for n = Oto2 are

(for z > 0):

po(-z) = [po(z)] exp (z) (61)

p, (-Z) = [po(z) - p, (z)] exp (z) (62)

p2(-z) = [po(z) - 2 p(z) + p2(z )]exp (z) (63)

Using positive arguments and the proper iteration approach (forward or backward), stable

values can be achieved. Care must be exercised in using these formulations; subtraction

of nearly equal numbers can occur in some instances, resulting in a loss of numerical

precision. Formulation of (61), (62), and (63) in truncated Maclaurin expansions of

suitable order is recommended in such cases. These expansions were not required for

problems tested here.

ii. Flux Equations

Implementing the Walters functions into equations (44) to (48) results in a very

compact set of equations. The right boundary angular flux in equation (44) is equivalent

to

WR=WLexp[-I + aAv p0(3 - r) exp[-EI (64)

39



where E is the optical thickness for a given p. as in equation (12), and V=-(-bAx). The

coefficients a and b are from the assumed source function (equation (32)). Similarly, the

zeroth and first moments of the angular flux are

aAx
V,- LP( ') + - [P0(13) - p,(P - )expl-E] (65)

and

vX,=3xVLdP,() -p.(E)I + 3aAxI3 [P2(13 ) - p(13)]
3aA(6

+ 3 [2 po(13) - [e + 21po(1 - ) exp[-e]] (66)

Since negative and positive argument forms for Walters functions are available using

both forward and backward iteration schemes (as applicable), no specific treatment of

terms using (3 - c) are typically required. Also, although z(p 2(z) -p(:)) is equivalent to

(Po(z) - 2 p,(:)), the first formulation is used in equation (66) (and wherever applicable).

This is because as z -4 0, (p2(z) - pl(Z)) approaches -1/6, while the other term is

ill-conditioned and goes to zero. Further, although division by E seems undesirable,

these are the most practical forms for these equations. In the event that optical

thicknesses become extremely thin to the point of causing catastrophic cancellations or

overflows, Maclaurin expansions of terms involving E could be implemented. However,

numerical testing of equations (64), (65), and (66) as presented with 0.003 revealed no

difficulties. Moreover, since the exponential characteristic scheme is designed to achieve

high accuracy using coarse cells, use of an extremely fine mesh is unnecessary.
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iii. Source iation and BEft Solving

In order for the exponential characteristic method to yield a solution to the Boltzmann

transport equation, very accurate values for the coefficients a and b are required. As

mentioned earlier, equations (47) and (48) relate SA and S- to the source functions

(equations (18) and (19)). Since SA and S, are known, root solving can be performed

using equations (47) and (48) to determine a and b for each spatial cell in a problem.

Again making use of the Walters functions, the following equations result from a

manipulation of equations (47) and (48):

SA=apO(P) (67)

S,= [3a 13(P2(13) - PI(13)) (68)

Equation (67) can be solved directly for a to give

A (69)

Using this and further manipulating equation (68) results in an equation that requires root

solving for 03, which indirectly yields b, since 13 = -bAx

P -o=  (70)

where

(1 -ps)(1- 2O (71 )

and
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Sx (72)

Note that no absolute values are specified for equation (72), which differs from equation

(29) in the adaptive methods (Mathews, 1990:419-457). Equation (70) can be expressed

in an expanded form using exponentials:

[ p+ rexpf-I ro =0 (73)

A plot of the function p1 (3)Ip o(p) is given in Figure 5.

pl(f)/p0(B)

-- -- --- - ------ ---- ------ - -.. . .

09

-10 -5 0 5 10
B

Figure 5. Ratio of p,(P3) to p0(P3) Walters Functions

An efficient root solving scheme is required to make the exponential characteristic

scheme competitive with other discrete ordinates methods. Newton's method is preferred

to determine 13 for each cell, as it has a second order of convergence. One difficulty in

using Newton's method is that it requires a reasonable initial guess for the root to
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guarantee convergence. Upon inspection of Figure 5, note that p,(3)/po([) is comparable

to an arctan(3) function. Normalizing the arctangent function so that it carries the proper

limits results in

PIA -+Iarctan[g(3)]A (74)
POA(1) 2 ir

where g (3) is some function which adjusts the curvature of the equation to yield an exact

result. Solving for g (3) in equation (74) and expanding the result in a Maclaurin series to

first order yields

g A = 12(75)

Placing this approximation for g (13) back into equation (74) yields a good approximation

for pI( 3 )/po(p3 ):

P I +Iarctan [ 2I) (76)
PO(I3  2 nt 121

Replacing p1(I3 )'po(p3) in equation (70) with equation (76) and solving the result for 3

yields:

P= 1 tan ro 2 (77)

Note that adding higher order terms in the Maclaurin expansion for g (3) forces one to

solve for a root of a quadratic, which defeats the purpose of finding a simple first guess

for 13. Equation (77) provides an excellent first guess to the root 3 when 0.23 < r. < 0.77,
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with a worst case absolute error of = 0.3 at either endpoint, becoming nearly exact as

ro -- , where P - 0. A hyperbolic tangent can also be constructed to approximate a first

guess For the root; however, the formulation using a tangent function is more accurate.

The tangent approximation (equation (77)) for f3 can be used for the entire range of ro,

which asymptotically approaches one for positive 1 and zero for negative P. Thu., P
extends to infinity in both the positive and negative directions. A first guess better than

that from equation (77) when ro > 0.77 is obtained by observing the limits of the actual

equation (73) for large positive values of 3. When ro -> 0.77, then

1
1- r0  (78)

Similarly, when ro < 0.23,

3 = --- (79)ro

These approximations are also very good, providing a root to within = 0.3 where they

take over from equation (77), becoming nearly exact as r0 approaches zero or one,

respectively.

Using equations (77), (78), or (79) as appropriate for an initial guess of 13, the

following equations for Newton's method yield roots within 5 iterations at an absolute

tolerance of 10- " (determined by numerical testing).

Pn+1 R. -G (0,,, ro) (80o)(80)

where
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G(3nro =1 P.- (exp[Pj]- 1) r °l (81)

and

G ('ro(exp[P.] - 1) (exp[-] -1)J (82)

As of this writing, the success of the exponential characteristic scheme in slab

geometry (as is shown in later sections) has prompted Minor to begin development of the

EC method in two dimensional rectilinear geometry. Since the task of root solving in

each cell constitutes the bulk of computational effort in the EC scheme, any substantial

improvement in root solving can significantly reduce the execution time required for EC.

Minor has investigated alternative root solving schemes to improve computational

efficiency. Using equation (71) and solving equation (70) for p, and expanding the

numerator and denominator of the result in a Maclaurin series, Minor found (in

preliminary studies) that the number of iterations required for root solving might be

reduced by at least one iteration. This requires use of the Maclaurin expansion over

defined sub-domains wherein varying numbers of higher order terms are carried to obtain

double precision accuracy. Minor is also investigating the utility of a table-interpolation

of Figure 5 to obtain a first guess for root solving (Minor, 1991).

F. EC Sourc Function Behavior

In order to cast the distribution functions and moments into Walters functions, the

quantity P = -bA- was introduced, where b is constant from the source function

(equation (32)). When P is negative, b > 0 and the first source moment S_ is positive.

Conversely, a positive value of 3 indicates S, is negative. It is easily seen that in a
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symmetrical problem, both positive and negative values of 3 are encountered,

emphasizing the need to treat Walters functions using negative arguments (see Section

IV.E.i.).

Mathematically, the exponential characteristic scheme is robust due to the unique

behavior of the source function s(x) = a[exp(bx)]. This function appears to be a natural

choice if faced with solving deep penetration transport problems. If b is identically zero,

then all equations describing flux distributions and moments default to the step

characteristic method. This is useful in problems that result in absolutely flat flux

profiles. In the case where ±b is very small but non-zero, as in a region with a virtually

flat flux profile, the source function can be approximated by the truncated Maclaurin

expansion

s(x)=a(1 +bx) (83)

Using this approximation in place of equation (32) to derive the flux distributions and

moments in equations (42) to (48), the exponential characteristic method simplifies into

an algebraic equivalent of the linear characteristic method.
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V. Progra Development A Validation

Program development, as discussed here, consisted of three phases: standardization,

optimization, and computer implementation of the exponential characteristic spatial

quadrature method. Standardization dealt with adapting existing codes using candidate

comparison methods (DD, DDF, LD, LC, SA, and LA) into one complete code, so that

all quantities could be computed using standard variables and methods. To optimize the

single multi-method code, several steps were taken, including the installation of timing

sequences, initializations, and moment and overall balance checks, as well as the

streamlining of data reporting and storage. Finally, the exponential characteristic

method, using computable forms for equations derived in the previous section, was

implemented into the multi-method code. As for program validation, all methods were

continuously validated and checked for accuracy following each major code

modification.

A. Standardization and Optimization

Several codes were supplied by LCDR K. Mathews, Ph.D. for solving slab geometry

discrete ordinates problems. Separate codes using diamond difference (with a fixup

option), linear discontinuous, step adaptive, and linear adaptive spatial quadratures were

supplied. A linear characteristic routine was constructed by modifying the linear

adaptive model. Because each code was slightly different in the way values were

computed, every effort was made to standardize all calculations into a single,

multi-method code. A standardized code was successfully implemented and allows the

computational effort for any spatial quadrature scheme to be determined directly (for a

specific problem) from the execution time required to achieve a converged solution. All
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execution times were computed based on real clock inquiries from the computer

operating system. (To avoid single system multi-tasking timing conflicts, no transport

solutions were obtained under the MicroSoft Windows 3.0 PC environment).

The boundary conditions treatable in this multi-method code include a choice of a

vacuum, a symmetric albedo, or a grey albedo at each slab face. Types of incident

currents available, also at each slab face, are a Lambertian, an isotropic surface source, or

a collimated beam (at any angle of incidence to the slab). These boundary conditions and

incident currents are discussed further in Appendix B. All iterations begin at the left slab

edge with positive angles and progress from left to right, then from right to left with

negative angles. Fluxes and currents are all initialized to zero as each different spatial

scheme is applied to a problem. The balance equations (equations (25) and (26)) are

verified for each cell during each iteration. The left and right sides of these equations are

compared, and the resulting maximum differences are reported. Upon convergence to a

specified relative tolerance (10-'), angular quadratures are performed and scalar fluxes

and currents are globally computed. Region values are then calculated by folding

together cell values. The overall balance equation (equation (33)) is verified in a manner

similar to tiiat for equations (25) and (26).

All input files for any problem can be set up in a standard format specified in the

MAKEIN1D input code. Due to unique differences involved in treating the source

function using fixed point and successive scatter methods, separate multi-method codes

are used for each technique. The name assigned to the fixed-point multi-method code is

SN ID-ALL, while the name assigned to the successive scatters version is SS ID-ALL.

Full featured output options are available, including ASCII data files which facilitate
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plotting of solutions. In addition, a separate error and order of convergence processing

algorithm, PROCSNO2, was developed to deal with the results from a large collection of

transport solutions for any given problem.

B. Implementation _f fEC Slatial Ouadratur

Following all of the modifications required for a smooth, multi-method, standardized

code, only one step was required to implement exponential characteristic spatial

quadrature. This step consisted of developing the subroutine which computed the angular

fluxes, based on source moments, for each mesh cell.

Naturally, the subroutine for the exponential characteristic method had to include

code for root solving to determine the coefficients a and b in equation (32). Following

an initial guess for 13 using either equations (77), (78), or (79), root solving using

equations (80), (81), and (82) was performed. Performance studies were conducted to

determine the optimum relative tolerance used in the Newton iteration loop. A relative

root tolerance of 10-5 was selected. This value provided a root that was accurate enough

for problem convergence to 10-', yet allowed roots to be found rapidly. In addition, flux

moments computed from roots calculated using this tolerance satisfied the balance

equations (See equations (25), (26), and (33)) as well as the other methods. Typically,

between two and five iterations were required to find a root. Decreasing the root solving

tolerance below 10-' causes EC to require increascd execution time. As shown in test

problems presented in subsequent sections, use of a relative tolerance of 10-5 offered

excellent relative performance.

Following the determination of the root 13 = -bAx, Walters functions using 13 and E

(the angular optical thickness) were calculated. If needed, the negative arguments for the
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Walters functions were treated using equations (61), (62), and (63), and all required

fluxes and flux moments were calculated using equations (64), (65), and (66). No other

functions were necessary inside the exponential characteristic spatial quadrature step.

The subroutine which performs these tasks is "StepEC" in the source code for

SNID-ALL in Appendix D.

C. Validation

The multi-method slab geometry codes were verified by comparing solutions of

conventional methods with independent versions of the originally supplied codes for DD,

LD, SA, and LA. An additional validation was performed using one independent slab

geometry code employing the DD scheme. Problems used to verify all solutions

consisted of a selection of optically thin single and multiple region problems (with

various scattering and absorption properties). All methods yielded essentially identical

numerical solutions to these problems. Solutions to these validation problems using the

exponential characteristic method agreed with those derived using conventional methods.
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VI. Teting n Evaluation

While many slab geometry transport problems were solved during the development of

the exponential characteristic scheme, only the results from a few select test cases are

presented. Clearly, there are an infinite number of scenarios where the performance of

the EC method versus other spatial quadrature methods might be investigated. However,

problems put forth here best illustrate the strengths and weaknesses of the exponential

characteristic method discovered to date. Each test problem was solved using both fixed

point and successive scatter iterations of the source function with various mesh sizes

corresponding to a range of optical thicknesses ;Ax. Limiting assumptions, comparisons

to other methods, error analyses, and computational costs and efficiencies are treated as

described in Section III.

A. Tes Case , Thick Absorber

To initially challenge the exponential characteristic method and evaluate its utility, a

single region with an optical thickness of sixteen (used by Mathews in his evaluation of

the linear adaptive method) was used as the first test case (Mathews, 1990: 444-445). A

schematic of this problem is presented in Figure 6.

The source on the left boundary (an ideal surface of isotropic emitters) has an

angular flux distribution inverse to g., corresponding to large fluxes at steep incident

angles (See Appendix B). Augmented by a small amount of scatter, the scalar flux on the

left boundary for the reference solution is more than 3.0. The region average scalar flux,

as expected, is reduced to nearly 1/45th of this value, reaching a value of = 10- at the

right boundary. The reference solution was computed with the linear characteristic

method using 256 cells over the single region. All methods performed well at the left
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Vacuum Vacuum

0 1w 16

Optical thickness = 16.0

Figure 6. Schematic for Test Case 1

boundary where current enters the slab. However, of real interest is how accurately the

various methods (listed in Table 3) computed the region average and right boundary

(x = 16) scalar fluxes. Error norms for each spatial quadrature method for the region

average scalar flux are presented in Figure 7. This figure clearly shows that the

exponential characteristic (EC) method outperformed all of the others, achieving results

for average flux within less than 0.2 percent of the reference solution using an optical

thickness of 4 (corresponding to only 4 mesh cells). Also note that EC performed nearly

as well using only a single sixteen mean free path cell.

The error norms for the right boundary flux are presented in Figure 8, where again,

the exponential characteristic method yielded much more accurate results using thick

cells. Observe in Figure 8 that using an optical thickness aAx = 4, the error of the EC

right boundary flux was less than 2 percent, while for LA, the nearest competitor, the

error was greater than 10 percent. On the coarsest mesh, EC performed slightly better

than LA. These results are typical of those found for currents and first flux moments as
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Figure 7. Test Case 1 Error in Region Average Scalar Flux

well. Note that while the diamond difference (DD) scheme converged rapidly as

arA -- 1 for the region average flux in Figure 7, it was severely in error at this same

optical thickness at the right boundary, as shown in Figure 8.

In terms of average pointwise error Q, computed using equation (37), the EC scheme

was almost four times more accurate than its nearest competitor, LA. Also, as can be

discerned from Figures 7 and 8, the EC method maintained a bounded error using

optically thick cells in this problem. As the mesh became highly refined, EC showed at

ivai 4th order convergence. (Convergence appeared to be 5th order in the limit of very

thin cells: this was not confirmed due to limitations in root solving, which required a shift

to LC when using extremely fine cells, as discussed in the next section).

Mesh size ratio (MSR), discussed in Section III.C, is useful in illustrating a

normalized mesh size relative to the number of cells used by the exponential
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Figure 8. Test Case 1 Error in Right Boundary Scalar Flux

characteristic scheme to achieve an average pointwise error Q. Figure 9 is a graph

depicting the relative MSR for this single thick absorber problem. (MSR values were

computed using linear interpolation of average pointwise error results over optical

thicknesses typical of those shown in Figures 7 and 8). Observe in Figure 9 that when 4

mesh cells were used for EC quadrature (yielding an error Q less than 1.5 percent), the

MSR for linear adaptive quadrature was 2.5. This means that for LA to achieve a average

pointwise error less than 1.5 percent, two and one half times the number of cells used by

EC were necessary (10 cells).

Figure 9 further demonstrates that significantly more cells are required by the other

methods for an equivalent average error DD and DDF would require such an abundance

of cells to obtain a calculation equivalent to EC that they offered no competition. Note

from the figure that both LD and SA appeared to level off with MSRs of nearly 5 and 3,
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respectively, while LC and LA merged to an MSR value of 1.7 as the mesh was refined.

Obviously, for this single thick absorber, EC is superior. In comparing execution times

required to reach an equivalent error Q, the EC method offered an advantage when up to

five cells were used (with an error Q of one percent). However, exec tion times for

single region absorption problems were so low that actual comparisons are made only in

later problems with at least two regions.

Solutions for this problem using successive scatters of the source function yielded

similar results. Overall, errors computed for successive scatters were 10 percent lower

for exponential characteristic quadrature, and remained mostly unchanged for all of the

other methods. Apparently, EC benefits from tracking each scattered flight of neutrons in

this thick absorber, possibly because it more accurately represents the source moment

behavior of each flight with the exponential source function. In any event, exponential
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characteristic has proven to be a very robust scheme in test case 1.

B. Igt Ca 2 Moderate Scatter and Source

Because the exponential characteristic method showed much promise in the first one

region absorber problem, two different regions were specified for the second test case. A

schematic of this problem is given in Figure 10. The first region is a sixteen mean free

path thick absorber with moderate scattering and is coupled to a second equally thick

absorbing region containing a source. The left boundary is a vacuum, and the right

boundary is an isotropic surface source with a vacuum.

Isotropic
Surface
Source

CJC Jinc = 1.0[ -- .5
Vacuum Vacuum

0 -- 16 p -- 3 2

Optical Thickness = 16.0 per Region

Figure 10. Schematic for Test Case 2

With moderate scattering in the left region, a modest source in the right region, and

an isotropic surface source on the right boundary, the flux profile in the second (source)

region should be almost flat. If this is the case, the constant b in the EC source function

equation (32) will be very small, and the EC method can be expected to perform like the

LC method, as discussed in Section IV.F.
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Figure 11. Test Case 2 Cell Boundary Scalar Flux

The cell bo-.,dary scalar fluxes for this problem are shown in Figure 11 using two

cells per region, equivalent to an optical thickness aAr = 8 in each cell. Results of region

average scalar fluxes are reported in Table 4 for this same optical thickness. As in the

first problem, a reference solution was computed with linear characteristic spatial

quadrature with 256 cells per region. Observe that the flux was reasonably flat in the

right region between x = 16 and x = 32, as anticipated.

Moving to the left from the right edge at x = 32 to the cell interface in the middle of

region 2 at x - 24. all methods appeared to yield effectively the same result except for the

diamond difference method, which plunges to a meaningless negative result. Between
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Table 4
Test Case 2 Region Average Scalar Fluxes for c Ax = 8

Method Region I A Region 2 OA

DD 2.8627E-02 5.7524E-01

DDF 2.8351E-02 6.0358E-01

LD 7.9753E-02 6.0516E-01

LC 1.6436E-02 6.0545E-01

SA 1.4972E-02 6.0653E-01

LA 1.5143E-02 6.0617E-01

EC 1.4876E-02 6.0631E-01

Ref 1.4646E-02 6.0550E-01

x = 16 ,,id x = 24, DDF and especially DD were noticeably in error. At x = 16 where

regions 1 and 2 meet, small differences in flux were reported by the various methods, as

shown in the exploded portion of the graph (note how closely EC tracked along the

reference solution). In the left region between x = 0 and x = 16, a wide variety of

solutions resulted, indicating severe numerical diffusion from the use of optically thick

cells. Remarkably, the flux solution for the exponential characteristic scheme agreed

almost precisely with the reference solution th.oughout both regions. As in test case 1,

LA offered the next best solution to EC, followed closely by SA.

Results of average pointwise and maximum observed errors are listed in Table 5 for

an optical thickness of oAr = 8. At this optical thickness, the EC method yielded an

average pointwise error Q less than 0.04, while this error for LA was in excess of 0.26.

For the exponential characteristic scheme, the maximum erro observed at any boundary

or region value for aA = 8 (including all fluxes, currents, and moments) for this problem

occurred in the solution for the net current at the left boundary (x = 0), which was 0.14.
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The maximum error for the LA scheme was found in the solution for the flux on the left

boundary, which was 1.36. This further demonstrates the ability of the EC scheme to

yield a reliable solution over a very coarse mesh.

Table 5
Test Case 2 Error Results for cAx = 8

Method Average Error Maximum Location of Maximum
Q Observed Error Observed Error

DD 0.9429 2.0000 Left Bdy 4
DDF 0.7580 2.0000 Left Bdy )

LD 0.6742 2.0000 Region I 4)

LC 0.4597 1.9823 Left Bdy

SA 0.2853 1.4231 Left Bdy4)

LA 0.2642 1.3651 Left Bdy 4

EC 0.0388 0.1409 Left Bdy J,,

A difficulty arose in the EC method for test case 2 when optical thicknesses dropped

below unity during calculations in the right source region. Analysis of intermediate

iteration values revealed that the first moment of the source was very small when

aAr < -1. The ratio of the first source moment S. to the zeroth moment SA was less than

6.0 x 10-6 for some cells. The value of 3 = -bAx was almost zero, and the number of

root solving iterations required by Newton's method (See Section IV.E.iii) became

unfavorably large, even for modest comparison tolerances. Although in these cases the

exponential characteristic scheme is algebraically equivalent to the linear characteristic

method, root solving is still required to obtain P3 and therefore b. When these

complications arose, the execution time for the EC scheme became extremely large,

burdened by the root solving overhead progressing into thousands of iterations in some
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cells, as opposed to the typical two to five normally required following the initial guess.

When some very optically thin cells were specified, the flux profile changed so little

across some cells that no roots were found; the Newton iteration scheme oscillated the

root around zero.

Since the EC method only encounters difficulty in root solving when S. is nearly

zero (compared to SA), and since it is asymptotically equivalent to the linear characteristic

method in these circumstances (See Section IV.F), a switch to LC was implemented into

the EC algorithm when the initial guess for 13 fell to less than or equal to 1.2 x 10-'. This

value was found to be a lower limit to maximize the use of the EC method and still avoid

root solving problems. The upper limit to this trip point is defined to be when the LC

scheme can be actuated with no fixup. This limit is satisfied when 13 is as large as two.

However, setting the trip point to use LC when 13 < 2 sacrifices the advantage of the EC

method in many cells, and could result in oscillating or failed convergence. This is

because the exponential source moments in EC can be quite unlike the linear moments in

LC for values of 13 not close to zero, potentially resulting in iterations that flip-flop

between EC and LC and thus never converge. However, this difficulty was not observed

in test case 2 when the trip point for 13 was set to 2.

In an effort to dete: mine an optimum set point, limited tests using test case 2 were

conducted with several optical thicknesses, computed over a range of increasing initial

guess setpoints for 13 to change to LC (between 1.2 x 10-' and 2.0). As the set point was

increased, resulting solutions became less accurate. However, between 13 1.2 x 10-5 and

up to 13 < 5.0 x 10-4 , no changes in any solutions were detected (using the standard

relative tolerance of 10-'), but first moment balances (using equation (26)) were

conserved to a much higher level using 13 <5.0 x 104. With a trip point 13 1.2 x 10-5, the
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first moment relative tolerance was = 10-4, while using 0 < 5.0 10-4 yielded a tolerance

of = 10-'°.An optimum set point of 13 < 5.0 x 10-4 corresponds to an S./SA of 2.5 x 10-4.

Further, this prevents extraordinarily high numbers of iterations for root solving in EC,

maximizes moment balance tolerances, and actuates a switch to LC for a few cases when

root solving becomes uniquely difficult (for very flat flux profiles across a cell, when

S, - 0). Under these constraints, LC never requires a fixup and conserves all moments.

Also, use of the LC method for an initial guess for 13 _ 5.0 x 10-4 is reasonable, as the

exponential characteristic scheme is asymptotically equivalent to linear characteristic in

this case. As a result, solutions for test case 2 were computed using a setpoint of

13 <5.0 x 10- switch to LC.

A plot of the average pointwise error using a fixed point source iteration for this

problem is given in Figure 12. As shown, errors for the EC method were far lower than

for any other scheme, especially for a coarse spatial mesh.
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Figure 12. Test Case 2 Average Pointwise Error, Fixed Point Source Iteration
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Analysis of successive scatter solutions to test case 2 demonstrated that the switch to

the LC method using 13 -5.0 x 10-4 was not necessary until optical thicknesses fell below

oAx = 2.0, compared to aAx = 4.0 when fixed point source iteration was used. This

result is observed because in successive scatters, the external source is only present in the

source function during the initial flight of neutrons in the source region. After the first

flight, the magnitude of the source function comes from only scattering of the first flight.

The source term is not dominated by the constant external source (as in the fixed point

case) in successive flights, resulting in ratios of first to zeroth source moments that are

not as close to zero. When this occurs, 13 is not exceedingly small. The need to use LC

only arises when the optical thickness is refined to a degree that the scattered flux for a

given flight of neutrons is very flat across a cell, yielding values of S,/SA and 13 that are

small.
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Figure 13. Test Case 2 Average Pointwise Error, Successive Scatters Source Iteration
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The average pointwise errors Q for test case 2 using successive scatters are shown in

Figure 13. The greatest contribution to the average error occurred for both fixed point

and successive scatters at x = 0. Using very coarse meshes, the error using successive

scatters was almost twice that of fixed point source iteration. This was not observed in

the first problem which had a strongly absorbing region. Apparently, when very coarse

meshes are specified with more than minimal scattering, successive scatters performs

worse than fixed point iteration of the source function. At an optical thickness of two, the

errors by either method are nearly equal. Below aAx = 2.0, a benefit of using successive

scatters was realized with decreasing optical thickness because the source function was

not dominated by the external source term; using optically thin cells, average pointwise

errors for successive scatters were only -60 percent of those for fixed point iteration.

Nevertheless, since the EC scheme delivers accurate solutions using a only a few cells,

these results suggest that for this problem, the additional five iterations required for a

successive scatters solution are not worth the computational effort.

Analogous to the convergence in test case 1, as the optical thickness GAx -4 0, the

EC method went to 4th order in test case 2. The convergence of the LC and LA schemes

trailed that of EC over coarser cells, each close to one at first, but also ending at 4th order

as cFr --> 0. As expected, the diamond schemes began with very low convergence and

closed on second order as the optical thickness decreased. The convergence of LD and

SA showed an improvement over DD and DDF. Overall, the EC method demonstrated

the highest order of convergence in the limit of thin cells.

The ioesh size ratio (MSR) for test case 2 is presented in Figure 14. These results

are similar to those presented in Figure 9 for test case 1. When EC used 2 cells, an MSR

of nearly 4 for LC and LA resulted, indicating an equivalent of 8 cells for LC and LA.
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When 4 cells were used with the exponential characteristic scheme, the linear adaptive

and linear characteristic methods required 3 times as many (12 cells) to obtain the same

error Q.

30

20 - and DDF -------*-------------*------ --------

0r L D

LC and LA

0 4 8 12 16 20 24 28 32

Test Case 2
Fixed Point Source Iteration Cells Used for EC

Figure 14. Test Case 2 Mesh Size Ratio

Execution time ratios (ETRs), computed using equation (39), are presented in Figure

15. Here the ETR for each spatial quadrature scheme is plotted versus average pointwise

error Q, and ETR values are execution times normalized to the time used by the EC

scheme. At an error Q slightly less than 4 percent, the EC scheme used 2 mesh cells, as

indicated, yielding a corresponding ETR of =2.5 for LC and LA. Therefore, LC and LA

required about 2.5 times the execution time as that consumed by the EC scheme to obtain

less than a 4 percent error Q. Only when the average pointwise error fell below 0.6

percent did the execution time for EC equal that for LC or LA (using more than 15 cells
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C. Test Cas 3 Absorber ad Diffusion

Clearly, the exponential characteristic spatial quadrature scheme has demonstrated

superior performance over all of the conventional schemes tested. In test case 2, the left

region was a modest scatterer, and the EC scheme yielded the best overall solution, even

better than LA or LC using optically thin cells. It is known that the diamond difference,

linear discontinuous, and linear characteristic methods satisfy the diffusion limit; as a
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diffusive problem is refined, these transport methods produce solutions that

asymptotically approach the solution produced by the neutron diffusion equation (Larsen,

1982: 90-95). In diffusive problems, S, is typically much smaller than SA, and in the limit

as the mesh is refined, the EC scheme is asymptotically equivalent to the LC scheme as

S, -) 0. Moreover, since the EC scheme performed better than the DD, LD, and LC

schemes in the moderately diffusive region of test case 2, 1 anticipated that the

exponential characteristic scheme would satisfy the diffusion limit. To test this

expectation, test case 3 contained two regions; a strongly absorbing region on the left,

and a highly diffusive region with a source on the right. Also, an isotropic surface source

was located at the right boundary, and vacuum boundaries were present on either side. A

schematic of this problem is given in Figure 16.

Isotropic

Source

C A."Jinc -- 1.0

Vacuum Vacuum

0 00 16 .

Optical Thickne 16.0 per Region

Figure 16. Schematic for Test Case 3

The solutions to the scalar flux for this problem are presented below in Figure 17.

Only two cells were used to obtain these solutions: the optical thickness was GAv = 8. As

expected, the flux solutions for the various methods were very close as a result of the

strong diffusion of neutrons from the right region. As indicated in the figure, the
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exponential characteristic scheme was not as accurate in predicting fluxes as in other

problems. The exponential source function in EC has more difficulty in modeling the

scalar flux in diffusive regions than the linear source function in LC. This is expected, as

an exponential approximation of a concave downward flux profile is frequently more in

error than for a linear approximation. Still, results for EC were found to agree closely

with LC and LA.

30 __________

5 - DD ar DDF
X EC,LD,LC,LA

-. C.k L C ...... -----------

36
10

_____________ RefRenc

15 D D ........ :. ---- ----- -------

-5S

0 8 16 24 32

Test Case 3 Distance, cm
Fixed Point Source Iteration
Optical Thickness of 8. 2 Ceils per Region

Figure 17. Test Case 3 Cell Boundary Scalar Flux
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Curiously, when boundary currents, moments, and scalar fluxes are all considered,

the EC scheme yielded the lowest average pointwise error Q. A plot of this average error

is given in Figure 18. Note in the figure that the error Q for the LA scheme was slightly

greater than that for EC.

.. . . .. ... ............ ..... .. .......... ....... ......... . ..... ------- . . . . .. .. ----... . .. .

0 ... .........1 -------- -------- --- .-------... --......------- .. . .... ............---E

1 E005 ........... ......... --- ............. 4- ---- ............ --- -................. ----............ ............

LC

L DL

I. V -- -- - - - - -- -- - - -I- - . . . . .. . . . I - - - - - - -4I- - - - - - - -

tEE6
0 Io - --- 

I-S I

01 0.2 0.5 1 2 5 10 20

Test Case 3 Optical Thickness per Cell
Fixed Point Source Iteration

Figure 18. Test Case 3 Average Pointwise Error

Furthermore. considering the maximum observed error in any region or boundary

flux, current, or moment, the EC scheme yielded very favorable results. A plot of the

maximum observed error for problem 3 is presented in Figure 19. Although the

maximum observed error for LA and EC are nearly the same, the average pointwise error

of the exponential characteristic scheme was still lower than that for the linear adaptive

method. Use of a successive scatters iteration of the source function yielded solutions

that were slightly degraded for all methods. In most cases, the difference between the

fixed point solution and the successive scatters solution was minor.
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Figure 19. Test Case 3 Maximum Observed Error

The EC solution to this problem proved to be in reasonable agreement with the

solutions for DD, LD, and LC methods. Of these methods, EC yielded the lowest

average and maximum errors (when considering all computed flux and boundary values).

Experience using the exponential characteristic method in other extremely diffusive

problems showed that EC performed better globally than either DD, DDF, or LD over

any optical thickness. In many cases, the solution afforded by EC was only slightly

worse than that for LC or LA; again, this is likely due to the source function in LC and

LA using a linear approximation instead of an exponential as in EC. Sometimes, EC

yielded the best overall solution by a small margin. Although supporting evidence is

extremely limited, these findings suggest that the EC method asymptotically approaches

the thin cell diffusion limit.
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Analysis of the mesh size ratio for test case 3 revealed that little advantage was

gained in using the EC scheme over the linear characteristic or linear adaptive methods,

as might be expected after inspection of the average pointwise error in Figure 18. As

mentioned, solutions for the EC, LA, and LC schemes were very close. When execution

time ratios were compared, the EC method was at a disadvantage, requiring more than

twice the execution time of LA for the same error. Thus, on the basis of accuracy and

execution time in test case 3, EC was not the most efficient scheme.
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VII. Conclusions Ad Recommendations

From the results for test case 1, the thick absorber, the exponential characteristic

scheme was superior to any other method. This is credited to the natural ability of the

exponential source function to model nearly exponential attenuation. Other spatial

quadratures required at least 2 to 3 times the number of cells that EC needed to yield an

equivalent solution. This reveals the potential savings in memory storage offered by EC

when applied to deep penetration absorbers. In two dimensions, the memory required by

EC may be as little as one tenth of that necessary for most other methods for a given

accuracy.

The strength of the exponential characteristic scheme was further demonstrated in test

case 2. This problem included a moderate scatterer region and a source (absorbing)

region, each of significant optical thickness. While most methods performed equally well

in the source region with an incident current, fluxes and currents became less accurate

with increasing penetration depth. Of all of the methods, the EC scheme yielded the most

accurate solution over the coarsest meshes (to within a few percent of the reference

solution). In addition to using fewer than 1/3 as many cells as the linear adaptive method

(the closest competitor), the EC scheme required only 1/3 of the execution time required

for LA to obtain an equivalent solution using a coarse mesh. Again, these slab geometry

results suggest that nearly a tenfold savings in memory storage and computational cost is

possible if the EC scheme is implemented in two dimensional Cartesian geometry.

The EC method encountered problems for very flat flux profiles when S. -- 0, (the

exponential constant P is close to zero), although this was easily solved by using the LC

method in such instances. Under these circumstances, the EC method is asymptotically

equivalent to the LC method.
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In the strongly diffusive region of test case 3, EC solutions compared well with

solutions for LC and LA. Overall, the solutions for EC were more accurate. These

limited results suggest that the EC method behaves correctly in the thin cell diffusion

limit. Further, although yielding a solution close to that provided by LC and LA, the EC

method typically required more than twice the computational effort (mainly due to root

solving requirements). Improved efficiency in root solving would decrease the

disadvantage EC demonstrates here, while increasing the advantage of using EC in the

other test cases.

The advantages of using successive scatters instead of a fixed point source iteration

(with the exponential characteristic scheme) were not significant. The greatest benefit

occurred as optical thicknesses became very thin in absorbing regions. In general,

iteration of the source using successive scatters performed worse than fixed point over

coarse meshes and better than fixed point over fine meshes. It is likely that the

attenuation of successive flignts over very coarse meshes leads to increased truncation

error. Since accurate calculations are desired over very coarse cells, use of successive

scatters is not advantageous.

Overall, the exponential characteristic method proved to be a robust scheme,

performing best in deep penetration problems, when I Sj >> SA. Further, considering all

spatial quadrature methods used in this research, the exponential characteristic scheme

typically yielded the most accurate solutions over the coarsest meshes in most problems.

This was especially true in problems having several regions with various scattering and

absorption properties. In most cases, the exponential characteristic method approached

fourth order convergence as the mesh was refined. Thus, numerical diffusion using the

EC scheme was minor. Even though the EC scheme is non-linear, no difficulties in

obtaining convergence were encountered for any problem tested.
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There are several issues concerning exponential characteristic spatial quadrature that

warrant more attention. By far, further optimization of the reot solving task offers the

single largest improvement in performance for the EC method, potentially reducing total

execution time required. Also, better treatment of root solving difficulties when 1P values

are close to zero is warranted, possibly by using series expansions in 3 in such cases.

Moreover, further investigation of the performance of the EC scheme in the diffusion

limit is warranted. Finally, the utility and feasibility of conserving second spatial

moments for this scheme might be investigated, using combinations of exponerntials

(hyperbolic forms) for the source function. In any event, this research has demonstrated

that the exponential characteristic scheme is a powerful technique for solving discrete

ordinates problems in slab geometry. Ultimately, the exponential characteristic scheme

may be used to evaluate transport problems once thought too large or too difficult to be

adequately solved on conventional computer systems.
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Appendix A- Angula Ouadraturc

All slab geometry discrete ordinates transport problems were solved using S.

Gauss-Legendre angular quadrature. Quadrature direction cosines and weights are given

in Table 6, with a graphical representation in Figure 20.

Table 6
Eight Point Single Range Gauss-Legendre Quadrature Constants

m 0 . 0 "mRad 1,. = Cos((,) w"

1 163.8 0.905 t -.960289856497536 .101228536290376

2 142.8 0.793 t -.796666477413627 .222381034453374

3 121.7 0.676 t -.525532409916329 .313706645877877

4 100.6 0.559 n -.18343464249565 .362683783378362

5 79.4 0.441 t +.18343464249565 .362683783378362

6 58.3 0.324 nt +.525532409916329 .313706645877877

7 37.2 0.207 nt +.796666477413627 .222381034453374

8 16.2 0.090 t +.960289856497536 .101228536290376
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Figure 20. Direction Cosines for S8 Angular Quadrature
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ApgeniI B o undare and Incidenul rrent

Descriptions of three types of boundaries and three kinds of incident currents

available in the multi-method fixed point and successive scatters discrete ordinates codes

are provided here. More detailed descriptions of each are available in the literature

(Lewis and Miller, 1984). Boundary conditions made available in the discrete ordinates

codes SN ID-ALL and SS ID-ALL are a vacuum, a symmetric albedo, and a grey albedo.

Incident left or right boundary currents available are a Lambertian current, an Nsotropic

surface source current, or a collimated beam current.

i. .Vacuum Boundary

If a vacuum boundary is specified, this means that the area beyond the last physical

region defined for the problem is a vacuum. No neutrons can be scattered or reflected

back into the problem after crossing the physical boundary. This is often called a "zero

return current" condition.

ii. Symmetrik Albedo Boundary

At a symmetric albedo boundary, for each amount of flux leaving across this

boundary, an albedo a (a fraction between 0 and 1) of the original outbound flux enters in

a direction corresponding to a spectral reflection. A symmetry boundary is a special case

of the symmetric albedo boundary, where the albedo ax = 1.0; this is often specified when

a completely symmetrical problem is specified and a solution for only half of the entire

problem is necessary.
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iii. f Albedo Boundary

The grey albedo boundary holds that an albedo ac times the outbound flux of neutrons

passing across the surface of the boundary return back into the boundary in an isotropic

distribution, uniformly dispersed over all angles. This is accomplished in slab geometry

by noting, for instance, at a left boundary, the entering (positive) current is given by

J+()=! f0v(0'o) (84)

If the incoming flux is a constant value xVJ(O) = A (as specified by the isotropic condition)

for directions 0 _ p. < 1, then the positive current reduces to

A
J+(0) = A (85)

From continuity of current at the boundary, Ji(0)=J-(O), which yields

xV+(O) =A =4,J(0) (86)

This states that for a grey albedo left boundary, the outgoing (negative) current is

multiplied by four times the albedo factor o: to yield an isotropic incoming angular flux

over 0 p. < 1.

A special case of the grey albedo boundary is a white boundary, where o: = 1, and all

exiting current returns in an isotropic distribution.
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iv. Lambertian Current

A Lambertian incident current is due to particle emissions from an outside isotropic

source, so that the angular flux which contributes to a Lambertian current is a constant F.

Using a left boundary and integrating over positive angles, the following equation yields

the incident current

F
JTL(0) = F (87)4

Thus, the incident current attributable to each direction cosine is

JawGO)= lP4
J,L (88)

A similar treatment is made at the right boundary.

v. Isotropic Surface Source Current

An isotropic surface source is a planar source of isotropic emitters, where the product

of the angular flux and direction cosine is held constant. Therefore, when the direction

cosine p is close to zero, the angular flux is highest due to greatest contribution from the

isotropic surface sources. Subsequently, the incident current attributable to each

direction cosine at a left boundary is

J,1(p) = (89)

vi. Collimated Beam Currnt

Discrete ordinates methods often do not accurately deal with highly anisotropic flux

distributions, e.g. a collimated beam. This is because the ordinates of a standard
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quadrature set, symmetric from -1 to 1, do not individually provide an accurate account

of the forward angular flux from an incident current. Under these circumstances, the best

method of treating a collimated beam incident in a direction cosine pI' that is not part of

the quadrature set is to interpolate the incident direction between applicable directions in

the quadrature set. Thus, the incident current in It' is shared between t, and , + 1, where

quadrature weights and direction cosines are used to adjust the magnitude of the incident

current to yield accurate quadratures.
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Appendix C =t Cas Problem

Presented below are the test cases and their reference solutions using fixed point

source iteration (solutions obtained using successive scatters are similar). These

reference solutions were used to illustrate the performance of the exponential

characteristic method in Section VI. Only test case I was acquired using an 8 MHz 8086

personal computer with 8087 math support. All other problems were solved using a 33

MHz 80486 ISA machine. (The 80486 machine tested approximately twenty times faster

than the 8086 machine).

i. Tet Caw -1 Thick Absorber

The input parameters and reference solution for the single region thick absorber

problem are given below:

Problem file: A:TMAI.IPT Output file: B:TMA1-256.OUT

Ident$: MdlP Mathews 90
number of regions = I
left bdy position = 0
type ot left bdy = 0 vacuum
current incident at left boundary = I
type of current incident at left bdy = 0 isotropic surface Src
region# cR SigmaR SourceR nc Right Bdy

1 0.1000 1.0000D+00 0.0000D+00 256. 16.0()
type of right bdy = 0 vacuum
current incident at right boundary = 0
type of current incident at right bdy =- 1 Lambertian
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Problem file : A:TMAI.IPT nk Angular Ordinates: 8
Output file : B:TMAI-256.OUT Quadrature Method : S8
Tk file : B:TMA1-256.TKD Negative Flux Fixups: NO
Max Iterations : 150 Reset Old Fluxes : YES
File Identifier: MdlP Mathews 90 Solution Tolerance : 1.001D-05

00:45:20 11-01-1991 SN1D-ALL.BAS Version 2.00 - 30 Oct 1991

Linear Characteristic -> LC Source Rotation (Sx<=Sa) Fixup ALWAYS Enabled
Execution Time: 2.4488 min
Converged After 8 iterations, MaxChangeObs = 9.686617141449785D-06

J plus J minus J net Bdy Flux
Reg# flux ave flux x-moment

+ 1.000000D+00 +2.633397D-02 +9.736660D-01 +3.022184D+00
I +6.761570D-02 -1.892749D-01

+8.612159D-09 +0.000000D+00 +8.612159D-09 +9.517948D-09

Mom Bals: 0th: CONSERVED MaxRelErr: 4.4702D-135 1.OOOOD-10
1st: VIOLATION 1.4321D-105 1.0000D-10

Region Bals: CONSERVED 3.6304D-08_< 1.0000D-05

ii. Tt Lase 2: Moderate Scatter and Source

The input parameters and reference solution for the moderate scatter and

absorber- source problem are given below:

Problen file: D:TGSI.IPT Output file: D:TGSI-256.OUT

Ident$: Ges 16mfp Abs+Src
number of regions = 2
left bdy position = 0
type of left bdy = 0 vacuum
current incident at left boundary = 0
type of current incident at left bdy = 0 isotropic surface Src
region# cR SigmaR SourceR nc Right Bdy

1 0.5000 .3OD+00 0.0000D+00 256. 16.0000
2 0.1000 1.0000D+00 5.OOOOD-01 256. 32.0000

ty-e of right bdy = 0 vacuum
current in'ident at right boundary = I
type of current incident at right bdy = 0 isotropic surface Src
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Problem file •D:TGS1.IPT nk Angular Ordinates: 8
Output file •D:TGS1-256.OUT Quadrature Method : S8
Tk file •D:TGS I-256.TKD Negative Flux Fixups: NO
Max Iterations : 150 Reset Old Fluxes : YES
File Identifier: Gesl6mfp Abs+Src Solution Tolerance : 1.00D-05

20:17:13 11-23-1991 SN1D-ALL.BAS Version 2.00 - 30 Oct 1991

Linear Charactcristic -> LC Source Rotation (Sx<=Sa) Fixup ALWAYS Enabled
Execution Time: 1.0911 min
Converged After 24 iterations, MaxChangeObs = 9.771934993029279D-06

J plus J minus J net Bdy Flux
Reg# flux ave flux x-moment

+0.000000D+00 +1.693132D-08 -1.693132D-08 +2.303910D-08
1 +1.464628D-02 +3.908373D-02

+2.065823D-02 +1.378285D-01 -1.171702D-01 +3.183050D-01
2 +6.054969D-01 +1.854079D-01

+ 1.636746D-01 +1.000000D+00 -8.363254D-01 +3.292646D+00

Mom Bals: 0th: CONSERVED MaxRelErr: 1.5519D-13_< 1.0000D-10
I st: VIOLATION 1.0979D-07< 1.0000D- 10

Region Bals: CONSERVED 2.0834D-08 1.0000D-05

iii. Test CQ 2 Absorber and Diffusion

The input parameters and reference solution for the absorber and diffusion problem

are given below:

Problem file: D:TGS2.IPT Output file: D:TGS2-256.OUT

Ident$: Ges 16mfp Abs+Diff
number of regions = 2
left bdy position = 0
type of left bdv = 0 vacuum
current incident at left boundary = 0
type of current incident at left bdy = 0 isotropic surface Src
reg # cR SigmaR SourceR nc Right Bdy

1 0.1000 1.0000D+00 0.0000D+00 256. 16.0000
2 0.9500 1.0(OOD+00 1.0000D+00 256. 32.0000

type of right bdy = 0 vacuum
current incident at right boundary = I
type of current incident at right bdy = 0 isotropic surface Src
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Problem file D:TGS2.IPT nk Angular Ordinates: 8
Output file : D:TGS2-256.OUT Quadrature Method : S8
Tk file : D:TGS2-256.TKD Negative Flux Fixups: NO
Max Iterations: 200 Reset Old Fluxes : YES
File Identifier: Gesl6mfp Abs+Dif Solution Tolerance : 1.00D-05

03:55:40 12-02-1991 SN1D-ALL.BAS Version 2.00 - 30 Oct 1991

Linear Characteristic -> LC Source Rotation (Sx<=Sa) Fixup ALWAYS Enabled
Execution Time: 6.5388 min
Converged After 144 iterations, MaxChangeObs = 9.652863571151075D-06

J plus J minus J net Bdy Flux
Reg # flux ave flux x-moment

+0.000000D+00 +3.550017D-08 -3.550017D-08 +3.913293D-08
I +1.386661D-01 +3.786462D-01

+4.430641D-02 +2.041100D+00 -1.996793D+00 +3.803869D+00
2 +1.544256D+01 +9.081632D-01

+2.647280D+00 +1.000000D+00 +1.647280D+00 +7.970842D+00

Mom Bals: 0th: CONSERVED MaxRelErr: 8.9809D-13< 1.OOOOD-10
1 st: VIOLATION 4.4807D-075 1.0000D-10

Region Bals: CONSERVED 7.5017D-06 1.0000D-05
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AppWijniPi flh urc f&&~

The following is the source listing for the multi-method, slab geometry, fixed point

source iteration SN ID-ALL code, written in MicroSoft QuickBASIC 4.5. Except for the

exponential characteristic scheme implemented by the author, all methods were derived

from individual codes originally written by LCDR K. Mathews, Ph.D. at the Department

of Engineering Physics, Air Force Institute of Technology, Wright Patterson AFB, OH,

45324. As discussed, the author incorporated all codes into this single compilation for a

uniform analysis approach. The successive scatter transport code, SS ID-ALL, and the

error compilation code, PROCSNO2, are archived with LCDR Mathews at the above

address.

DECLARE SUB SetSwitchECtoLC ()
DECLARE SUB StepDD (Jin#,Jout#,Sx0,dx#,Sigma#,mu4 Fat)
DECLARE SUB StepSC (Sigma,DeltaX#,mu#,Fl#,Sa#,Sxt,Fr#,Fa#,Fxn)
DECLARE SUB StepLC (Sigma#,DeltaX#,mu#,Fl#,SaOSx#,Fr#,FauFx4)
DECLARE SUB StepLN (Sigma,DeltaX#,mu#,Fl ,Sa#,Sx#,Fr#,Fa* Fx#)
DECLARE SUB StepSA $igma#,DeltaX4,mu#,Fl#,Sa#,Sx#,Fr#,Fa*,Fx )
DECLARE SUB StepLA (Sigma,DeltaX#,mu ,Fl#,SaOSx*,FruFa# Fx=)
DECLARE SUB StepEC (Sigma#,DeltaX#,mu#,FlO,Sa*,Sx#,Fr#,Fa#,Fx#)
DECLARE SUB Mom0StepCheck (FluFr#,Fa#,eps#,Sa#,DeltaXu,muN)
DECLARE SUB MomlStepCheck (FI#,Fr#,Fa ,Fxt ,e p s # ,S x n,D e lt aX t ,m u n )

DECLARE SUB PrtTK (labl$, vrblu(), istart%, n%)
DECLARE SUB BeginSets C)
DECLARE SUB AltMenu ()
DECLARE SUB makeP (pn(), en)
DECLARE FUNCTION MIN# (x#, y#)
DECLARE FUtUTION MKAXn (x#, y#)
DECLARE FUN CTION Choose% (promptS)
DECLARE FUNCTION ParseNthWord$ (a$, n%)
DECLARE FUNCTION Gx# (xu, rou)
DECLARE FUNCTION DdxG# (xn )

CONLST False = 0
CONST True = NOT False

DEFINT I, K, N1
DEFDBL A-G, J, L-M, O-Z

pi = 4 * ATN(l!)

'PROGRAM SNiD-ALL.BAS
'Discrete Ordinates (SN) ID Slab Geometry Program
'for research at the Air Force Institute of Technology
'by Kirk A. Mathews, Ph.D, modified by Glenn E. Sjoden, P.E.

VS "SNID-ALL.FAS Version 2.10 - 10 Dec 1991"
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-- Spatial Quadrature Methods Supported in this Code --
DD-Diamond Difference (from V-2.05, 19 Feb 90)
LD-Linear Discontinuous (from V-2.04, 4 Feb 90)
SC-Step Characteristic (from V-2.04, 1 Mar 90)
LC-Linear Characteristic (Modified from LA below)
LN-Linear Nodal (from V-2.04, 4 Feb 90)
SA-Step Adaptive (from V-2.04, 4 Feb 90)
LA-Linear Adaptive (from V-2.04, 4 Feb 90)

- by Kirk A. Mathews, Ph.D.

EC-Exponential Characteristic (V-1.20, 16 Oct 91)
- by Glenn E. Sjoden, P.E.

WIDTH LPRINT 80
'Arrays used in defining the problem --

Xbdy(ir) is right bdy of region ir
cR(ir) is scatter to total cross-section ratio in region ir
SigmaR(ir) is total cross-section in region ir
source(ir) is volumetric source in region ir
iic(ir) is number of cells in region ir
mu(k) is k'th "discrete ordinate" (direction in quadrature set)
w(k) is weight associated with mu(k) in angular quadrature set
dx(ix) is thickness of cell ix
Fa(ix,k) is flux (psi) in directio,. mu(k) averaged over cell ix
Fx(ix,k) is first moment of psi in direction mu(k) over cell ix
J(ix,k) is current (mu*psi) in direction mu(k)

through right side of cell ix
Note: - is positive for positive mu and neg. for neg. mu

FluxA(ix) is scalar flux averaged over cell ix
FluxX(ix) is first moment of scalar flux over cell ix
sigma(ix) is total cross-section in cell ix
c(ix) is scatter to total cross-section ratio in cell ix
source(ix) is volumetric source in cell ix
Sa(ix) is average source term (s = c*flux+source/sigma) in cell ix
Sx(ix) is change in Sa across cell ix
lprint ix, nx

Problemfile$ = ParseNthWord((COMMAND$), 1)
'returns first parameter found on command line
DO

GOSOB CommandProfile
SELECT CASE CmiProf$
CASE "S"

G0UP OpenProblemFile
NewPrcblen% = True
SwE-toLCSetPt = .00012
SwitchEC% = False
CC5TT ReaiPrzblemData
CLCSE $I 'close input file
PevEcho$ = "SCREEN"
DO

CLS
GOSUB EchoProblem
GOSUP AdiustProblerData

LOOP UNTIL EnterNC% = False
ff% = Choose("Use Form Feeds in Summaries? (Y/N) :
DevEcho$ = "LPTl"
GCSI-19 ValidateProblem
PRINT
IF Choost-("Echo Input Data? (Y/N): ") THEN

DevE~$ = "LPTl"
GOSUB EchoProblem

END IF
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GOSUB ResetMomerrs
DO

GOSUB InputMethodParaneters
GOSUB SetClocks
DevEchoS = "LPT1"
GOSUB EchoMethod
DevEcho$ = 'SCREEN'
GOSUB EchoMethod
GOSUB InitializeProblem
NewProblem% = False
COSUB SnSolve
GOSUB CalculateResults
GOSUB VerifyRegionsByBalanceEquation
StopClock = TIMER
ExecMin =(StopClock - StartClock) / 60!
DevEcho$ "LPTl"
GOSUB LPrintRegionSummary
GOSUB CreateTKDataFile
GOSUB ResetMomerrs
SwitchEC% = False

LOOP WHILE Choose("Solve sam: problem with different Sn? (y/n):

PR INT
Problemfile$

CASE "A"'
ff% = False
CALL BeginSets
CALL AltMenu
NewProblem% = True
GOSUB ReadProblemData
CLOSE al 'close input Aile
DevEcho$ = "SCREEN"
DO

CLS
COSUB EchoProblem
GOSUB AdjustProblemData

LOOP UNTIL EnterNC% = False
DevEnho$ = "SCREEN"
GOSUB ValidateProblem
IF UCASE$(Qoutf$) = "Y" THEN

DevEcho$ = "OUT'
GOSUB EchoProblem

END IF
GOSUB ResetAgain

Ret luxA:
DO

IF again% THEN
CALL AltMenu
DevEcho$ = "SCREEN''
DO

C LS
GOSUP EchoProblem
GOSUP AdjustProblemData

LOOP UNTIL EnterNC% = False
De'cEocZ= "SCREEN"
GOSUF ValidateProblem
IF UCASES(Qoutf$? = 'Y" THEN

DevEcho$ = "OUT"
GOSUP EchoProblem

END IF
GVSUBT ResetAgain

END IF

86



GOSUB ItputMethodParameters
GOSUB SetClocks
DevEcho$ = "SCREEN": Eout$ = 'FULL'
GOSUB EchoMet hod
LOCATE 12, 12: PRINT *Processing - ;TotDifMeth$; <-
IF UCASE$(Qoutf$) = 'Y" THEN

DevEcho$ ' OUT"
IF itirn 0 THEN

Eout$ ="FULL"

ELSE
Eout$ ="PARTIAL'

END IF
GOSUB Echoi-,ethod

END I F
GOSUB InitializeProblem
IF ResetAllFluxes$ = "YES" THEN

NewProblem% = True
ELSE

NewProblen% =False
END IF
GOSUB SnSolve
GOSUB CalculateResults
GOSUB VerityRegions~y~alanceEquation
StopClock = TIMER
ExecMin =(StopClock - StartClock) /60!
GOSUB Incremitim
DevEcho$ = "SCREFN" : Eout$ = "FULL"
GOSUB EchoMethod
GOSUB LPrintReqionSumnary
IF UCASE$(Qoutf$) = "Y" THEN

DevEcho$ = "OUT"
GOSUB LPrintRegionSummary

END I F
GOSz-UB CreateTKDataFile
Goc:-r1B ToaleDitMeth
GCOSUB ResetMomerrs

LOOP WHILE INSTR("DDLDSCLCLNSAL AEC", DifMeth$) AND LEN(DitMeth$) =2

fl~"v~chcr$ = "SCFEEN"
GOSU'B Run 7ummarv,
IF UAE(Qc',ut f -' =Y" THEN

Dev~ho'$= "OU T"
GUBRunSummary

END 1 F
BEEP: BEEP
IF Choose("Solve same prob-lem with different Sn? (y/n) ")THEN

aaainf% = True
GCTO FefluxA

END IF
FW> FI ECT
LOOP WHILE Choose (I"Sclve Ariot her Problem? (y/n):
END

C omma nl F f i 1e
C7-.PRINT VS: PRINT

DO
1IPT "Type of Command Profile (S-Standard' A-Alternato=) ",CmdProf$

OmcPrcf$ = UCAS-E(LEFT$(LTRIM$,CmdProf$), 1))
LOP UTNTIL INS TR"SA", CmdProf$) AND LEN(CmdProf$) = 1

RETU-RN
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SetClocks:
StartDate$ = DATE$: StartTime$ = TIME$
StartClock = TIMER: CLS
RETURN

ResetAgain:
again% = False
SwitchEC% = False
REDIM Rtim(l TO 8), RelRtim(l TO 8)
REDIM RErranal~i TO 8), RelRErranal(l TO 8)
itim = 0

RETURN

Incremit Un:
itim = itim + 1

Rtirn(itim) = ExecMin
RErrarial(itii) =MaxRegrerr

CLS
RETURN

ResetMornerrs:
MornOlntFlag$ = O th: CONSERVED": Maxlvom~rerr = 0
MomInrtFlag$ = l st: CONSERVED": MaxMomlrerr = 0
RETURN

ToggleDifMeth:
ilotogl =ilotogi + 3: ihitogi = ihitogi + 3
DifMeth$ =LTRIM$(MID$(TotDifMeth$, ilotogi, ihitogi))
DifMeth$ =UCASE$(LEFT$(LTRIM$(DifMeth$'), 2))
RETURN

OpenProblemFile:
CLS
PRINT V$
PRINT
IF Probleinfile$ = ~THEN INPUT "File to read for input: "

Problernfile$
OPEN Problernfile$ FOR INPUT AS #1
'check for correct file:
INPUT #1, Ident$
PRINT Ident$
DO

INPUT "Correct File? (Yes/No/Quit): ", a$
a$ = UCASE$(LEFT$(LTRIM$(a$), 1))

LOOP UNTIL INSTR("YNQ", a$) AND LEN(a$)=1
SELECT CASE aS

CASE "N"
CLOSE #1
ProblemfileS
GOTO OpenProbleinFile

CASE "Q--
END

CASE "Y"
CLS

CASE ELSE
BEEP
PRINT "ERROR: Unsupported choice in OpenProblemFile."
STOP

END SELECT
RETURN
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ReadProblemData:
INPUT #1, nr 'number of regions
REDIM Xbdy(nr), cR(nr), SigmaR(nr), SourceR(nr), nc(nr)
INPUT #1, Xbdy(0) 'left bdy position
INPUT #1, tib 'type of left bdy --
'0 = vacuum
'(0,+l] = symmetric albedo
'{specular reflection factor)
'[-1,0) = grey albedo
'{Lambertian reflection factor)
INPUT #1, jinclb 'current incident at left boundary
INPUT #1, tinclb 'type of current inc at left bdy --
'-l = Lambertian
'0 = isotropic surface source
'(0,+l] = abs(mu) of collimated incident beam
FOR ir = 1 TO nr

INPUT #1, cR(ir), SigmaR(ir), SourceR(ir), nc(ir), Xbdy(ir)
NEXT ir
INPUT #1, trb, jincrb, tincrb

RETURN

AdjustProblemData:
EnterNC% = Choose("Manually enter values for # cells / region? (y/n):
" )

IF EnterNC% THEN
FOR ir = 1 TO nr

PRINT " "; ir; TAB(10);
PRINT USING "##.####"; cR(ir);
PRINT TAB(20);
PRINT USING "##.####....; SigmaR(ir);
PRINT TAB(34);
PRINT USING "##.####"..; SourceR(ir);

PRINT TAB(48);
PRINT USING "-> ###. <-"; nc(ir);
PRINT TAB(58);
PRINT USING "###.####"; Xbdy(ir)

IF EnterNC% THEN
PRINT "Region"; ir;
INPUT "Number of cells? nc = ", nc(ir)
PRINT

END IF
NEXT ir

END IF
PRINT

RETURN

ValidateProblem:
bad% = False
SELECT CASE DevEcho$
CASE "LPTI"

OPEN "LPTI:" FOR OUTPUT AS #4
CASE "SCREEN"

OPEN "SCRN:" FOR OUTPUT AS #4
CASE "OUT"

OPEN Outfile$ FOR APPEND AS #4
END SELECT
FOR ir = 1 TO nr

IF Xbdy(ir) <= Xbdy(ir - 1) THEN
PRINT #4, "Bad Input:"
PRINT #4, "Xbdy("; ir; ") = "; Xbdy(ir)
bad% = True

END IF
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IF cR(ir) < 0 OR cR(ir) > 1 THEN
PRINT #4, "Bad Input:"
PRINT #4, "cR(*; ir; ") = "; cR(ir)
bad% = True

END IF
IF SigmaR(ir) <= 0 THEN

PRINT #4, "Bad Input:"
PRINT #4, " SigmaR("; ir; ) ="; SigmaR(ir)
bad% = True

END IF
IF SourceR(ir) < 0 THEN

PRINT #4, "Bad Input:"
PRINT #4, " SourceR("; ir; ") =; SourceR(ir)
bad% = True

END IF
IF nc(ir) <= 0 THEN

PRINT #4, "Bad Input:"
PRINT #4, " nc("; ir; ") ="; nc(ir)
bad% = True

END IF
NEXT ir
IF ABS(tlb) > 1 THEN

PRINT #4, "Bad Input:"
PRINT #4, " type of left boundary -- tlb ="; tlb
bad% = True

END IF
IF ABS(trb) > 1 THEN

PRINT #4, "Bad Input:"
PRINT #4, " type of right boundary -- trb ="; trb
bad% = True

END IF
IF jinclb < 0 THEN

PRINT #4, "Bad Input:"
PRINT #4, " negative incident current at left -- jinclb =; jinclb
bad% = True

END IF
IF jincrb < 0 THEN

PRINT #4, "Bad Input:"
PRINT #4, " negative incident current at right -- jincrb ="; jincrb

bad% = True
END IF
IF tinclb < -1 OR (tinclb > -1 AND tinclb < 0) OR tinclb > 1 THEN

PRINT #4, "Bad Input:"
PRINT 44, " type of incident current at left -- tinclb ="; tinclb
bad% = True

END IF
IF tincrb < -1 OR (tincrb > -1 AND tincrb < 0) OR tincrb > 1 THEN

PRINT #4, "Bad Input:"
PRINT #4, " type of incident current at right -- tincrb ="; tincrb

bad% = True
END IF
IF bad% = True AND (DevEcho$ = "LPTl") THEN

PRINT #4, CHR$(12)
CLOSE #4
END

ELSEIF bad% = True THEN
CLOSE #4
END

END IF
CLOSE *4
RETURN
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EchoProblem:
SELECT CASE DevEcho$
CASE "LPTl"

OPEN "LPTl:" FOR OUTPUT AS #4
CASE "SCREEN"

OPEN "SCRN:" FOR OUTPUT AS #4
CASE "OUT"

OPEN Outfile$ FOR APPEND AS #4
END SELECT
PRINT #4, ************************************************************

PRINT #4, "Problem file: "; UCASE$(Problemfile$); TAB(44); "Output
file: "; UCASE$(Outfile$)
PRINT #4, *****

PRINT #4,
PRINT #4, "Ident$: "; Ident$
PRINT #4, "number of regions ="; nr
PRINT #4, "left bdy position ="; Xbdy(O)
PRINT #4, "type of left bdy =; tlb;
SELECT CASE tlb

CASE 0
PRINT #4, " vacuum"

CASE 0 TO 1
PRINT #4, " symmetric albedo (specular reflection factor)"

CASE -1 TO 0
PRINT #4, " grey albedo (Lambertian reflection factor)"

CASE ELSE
PRINT #4, " invalid"

END SELECT
PRINT #4, "current incident at left boundary ="; jinclb
PRINT #4, "type of current incident at left bdy ="; tinclb;
SELECT CASE tinclb

CASE -1
PRINT #4, " Lambertian"

CASE 0
PRINT #4, " isotropic surface Src"

CASE 0 TO 1
PRINT #4, " abs(rmu) of collimated incident beam"

CASE ELSE
PRINT #4, " invalid"

END SELECT
PRINT #4, "region #"; TAB(13); "cR"; TAB(23); "SigmaR"; TAB(37);
PRINT #4, "SourceR"; TAB(49); "nc "; TAB(58); "Right Bdy"
FOR ir = 1 TO nr

PRINT #4, " "; ir; TAB(10);
PRINT #4, USING "##.####"; cR(ir);
PRINT #4, TAB(20);
PRINT #4, USING "#*.###' ... ; SigmaR(ir);
PRINT *4, TAB(34);
PRINT #4, USING "##.###...; SourceR(ir);
PRINT #4, TAB(48);
PRINT #4, USING "###."; nc(ir);
PRINT #4, TAB(58);
PRINT #4, USING "###.####"; Xbdy(ir)

NEXT ir
PRINT #4, "type of right bdy ="; trb;
SELECT CASE TypR

CASE 0
PRINT #4, " vacuum"

CASE 0 TO 1
PRINT #4, " symmetric albedo {specular reflection factor)"
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CASE -1 TO 0
PRINT #4, " grey albedo (Lambertian reflection factor)"

CASE ELSE
PRINT #4, " invalid"

END SELECT
PRINT #4, "current incident at right boundary =*; jincrb
PRINT #4, "type of current incident at right bdy ="; tincrb;
SELECT CASE tincrb

CASE -1
PRINT #4, " Lambertian"

CASE 0
PRINT #4, " isotropic surface Src"

CASE 0 TO 1
PRINT #4, " abs(rmu) of collimated incident beam"

CASE ELSE
PRINT #4, " invalid"

END SELECT

IF ff% THEN PRINT #4, CHR$(12) ELSE PRINT #4, PRINT #4,
SELECT CASE DevEcho$
CASE "LPTI", "SCREEN", "OUT"

CLOSE #4
END SELECT

RETURN

InputMethodParameters:
SELECT CASE CmdProf$
CASE "S"
PRINT
DO

PRINT "Select Spatial Quadrature Method ."
PRINT
PRINT " DD - Diamond Difference"
PRINT " LD - Linear Discontinuous"
PRINT " SC - Step Characteristic"
PRINT " LC - Linear Characteristic"
PRINT " LN - Linear Nodal"
PRINT " SA - Step Adaptive"
PRINT " LA - Linear Adaptive"
PRINT " EC - Exponential Characteristic"
PRINT
INPUT "Choice? (DD,LD,SC,LC,LN,SA,LA,EC): ", DifMeth$
DifMeth$ = UCASE$(LEFT$(LTRIM$(DifMeth$), 2))

LOOP UNTIL INSTR('DDLDSCLCLNSALAEC", DifMeth$) AND LEN(DifMeth$) = 2
SELECT CASE DifMeth$

CASE "DD"
PRINT "For Diamond Difference Spatial Quadrature:"
fixup% = Choose("Use Negative Flux Fixup? (y/n): ")
PRINT

CASE "LN"
PRINT "For Linear Nodal Spatial Quadrature:"
fixup% = Choose("Use Scalar Flux Rotation Fixup? (y/n): ")
PRINT

CASE "LD", "SC-, "LC-, "SA-, "LA"
CASE "EC"

PRINT
CALL SetSwitchECtoLC

END SELECT
DO

INPUT "Max number of iterations: IterMax = ", Itermax%
LOOP UNTIL Itermax > 0
PRINT
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PRINT "Criterion for convergence is that over an iteration,"
PRINT "the relative change in each cell scalar flux <= Change"
DO

INPUT "Convergence Criterion: (0 < Change < 1) Change =
Change

LOOP UNTIL 0 < Change AND Change < 1
PRINT
DO

INPUT "Tolerance for Moment Balance Comparisons (0< MomTol < 1)";
MomTol

LOOP UNTIL Change > 0#
PRINT
DO

PRINT "Select Angular Quadrature Method:"
PRINT " S - Single Range Gauss-Legendre"
PRINT " D - Double Range Gauss-Legendre"
PRINT " M - Composite Midpoint Rule"
PRINT
INPUT "Choice? (S/D/M): ", QuadMeth$
QuadMeth$ = UCASE$(LEFT$(LTRIM$(QuadMeth$), 1))

LOOP UNTIL INSTR("SDM", QuadMeth$) AND LEN(QuadMeth$) = 1
PRINT

CASE "A"
END SELECT
SELECT CASE QuadMeth$

CASE "S"
GOSUB SingleRangeGauss

CASE "D"
GOSUB DoubleRangeGauss

CASE "M"
GOSUB CompositeMidpointQuadrature

CASE ELSE
BEEP
PRINT "ERROR: Illegal choice in InputMethodParams"
STOP

END SELECT
RETURN

SingleRangeGauss:
SELECT CASE CmdProf$
CASE "S"
DO

PRINT "For Single-Range Gauss Sn, n is total # of mu's."
PRINT "Supported Orders are n = 2, 4, 6, 8, 10 and 12."
PRINT
INPUT "Enter: n = ", nk

LOOP UNTIL (nk >= 2) AND (nk <= 12) AND (nk MOD 2 = 0)
PRINT

CASE "A"
END SELECT
REDIM w(nk), mu(nk)
nk0 = nk
GOSUB EvenGauss
RETURN

EvenGauss:
SELECT CASE nk0

CASE 2
mu(1) = -. 577350269189626#: w(l) = 10

CASE 4
mu(1) = -.861136311594053#: w(1) = .3478548451374541
mu(2) = -. 339981043584856#: w(2) = .652145154862546*
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CASE 6
mu(1) = -.9324695142031521#: w(1) = .17132449237917#
mu(2) = -.661209386466265#: w(2) = .360761573048139#
mu(3) = -.238619186083197#: w(3) = .467913934572691#

CASE 8
mu(l) = -.960289856497536#: w(1) = .101228536290376#
mu(2) = -.7966664774136269#: w(2) = .222381034453374#
mu(3) = -. 525532409916329#: w(3) = .313706645877877#
mu(4) = -.18343464249565#: w(4) = .362683783378362#

CASE 10
mu(I) = -.973906528517172#: w(1) = .066671344308688#
mu(2) = -.865063366688985#: w(2) = .149451349150581#
mu(3) = -.679409568299024#: w(3) = .219086362515982#
mu(4) = -.433395394129247#: w(4) = .269266719309996#
mu(5) = -.148874338981631#: w(5) = .2955242247147531

CASE 12
mu(l) = -.981560634246719#: w(1) = .047175336386512#
mu(2) = -. 904117256370475#: w(2) = .106939325995318#
mu(3) = -.769902674194305#: w(3) = .160078328543346#
mu(4) = -. 587317954286617#: w(4) = .203167426723066#
mu(S) = -. 36783149899818#: w(5) = .233492536538355*
mu(6) = -. 125233408511469#: w(6) = .249147045813403#

CASE ELSE
BEEP
PRINT "ERROR: Gauss-Legendre with NK ="; nk0; " not supported."
STOP

END SELECT
FOR k = nk0 TO nk0 \ 2 + 1 STEP -1

mu(k) = -mu(nk0 - k + 1)
w(k) = w(nkO - k + 1)

NEXT k
RETURN

DoubleRangeGauss:
SELECT CASE CmdProf$
CASE "S"
DO

PRINT "For Double-Range Gauss Sn, n is # of mu's in each range."
PRINT "Supported Orders are n = , ?, 3, 4, 6, 8, 10 and 12."
INPUT "Enter: N = ", nk

LOOP UNTIL nk >= 1 AND nk <= 12 AND ((nk MOD 2 = 0) OR nk < 4)
CASE "A"

END SELECT
nkO = nk
nk = 2 * nk0
PRINT
REDIM w(nk), mu(nk)
SELECT CASE nk0

CASE 1
mu(1) = 0: w(1) = 2

CASE 3
mu(1) = -.7745966692#: w(1) = .5555555556#
mu(2) = 0: w(2) = .8888888888000001#
mu(3) = -mu(1): w(3) = w(1)

CASE 2, 4, 6, 8, 10, 12
GOSUB EvenGauss

CASE ELSE
BEEP
PRINT "ERROR: Illegal nkO in DoubleRangeGauss."
STOP

END SELECT
'Shift and scale the above single-range quad set into the interval
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(-1,0)

FOR k = 1 TO nk0
mu(k) = .5 * (mu(k) - 1): w(k) = .5 * w(k)

NEXT k
'mirror to the other single-range quad set, for interval (0,+l)
FOR k = nk0 + 1 TO nk

mu(k) = -mu(nk + 1 - k): w(k) = w(nk + 1 - k)
NEXT k
RETURN

CompositeMidpointQuadrature:
SELECT CASE CmdProf$
CASE "S"

DO
PRINT "For Composite Midpoint Rule Sn, n is total # of mu's."
PRINT "The mu's are at the center of equally sized intervals,"
PRINT " and are given equal weights."
PRINT "Supported Orders are n = 2, 4, 6, ... "

INPUT "Enter: N = ", nk
LOOP UNTIL nk > 0 AND ((nk MOD 2) = 0)
PRINT

CASE "A"
END SELECT
REDIM w(nk), mu(nkj
FOR k = 1 TO nk

mu(k) = -1 + (2 * k - 1) / nk
w(k) = 1 / nk

NEXT k
RETURN

EchoMethod:
SELECT CASE DevEcho$

CASE "LPTI"
OPEN "LPTI:" FOR OUTPUT AS #4

CASE "SCREEN"
OPEN "SCRN:" FOR OUTPUT AS #4

CASE "OUT"
OPEN Outfile$ FOR APPEND AS #4

END SELECT
SELECT CASE DifMeth$

CASE "DD"
a2$ = "Diamond Difference"
IF fixup% THEN

a3$ = " with Negative Flux Fixup."
ELSE

a3$ = " with NO Flux Fixup."
END IF

CASE "LD"
a2$ = "Linear Discontinuous"
a3$ =

CASE "SC"
a2$ = "Step Characteristic"
a3$ =

CASE "LC"
a2$ = "Linear Characteristic"
a3$ =

CASE "LN"
a2$ = "Linear Nodal"
IF fixup% THEN

a3$ = " with Scalar Flux Rotation Fixup."
ELSE

a3$ = " with NO Flux Rotation Fixup."
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END I F
CASE "SA"

a2$ = 'Step Adaptive"
a3$ =

CASE *LA"
a2$ = "Linear Adaptive"
a3$ =

CASE "EC"
a2$ = "Exponential Characteristic"
a3$ =

END SELECT
SELECT CASE CrndProf$
CASE "5"

PRINT #4, "****************************

PRINT #4, StartTime$; " ;StartDate$; " ;V$

PRINT #4, "Solution by Discrete Ordinates (Sn) with n = ;nk;

PRINT #4, " mu's, total,"
SELECT CASE QuadMeth$

CASE "S"
al$ = " with Single-Range Gauss-Legendre Angular Quadrature"

CASE "D"
al$ = , with Double-Range Gauss-Legendre Angular Quadrature"

CASE "M"
al$ = " with Composite Midpoint Angular Quadrature"

CASE ELSE
BEEP
PRINT "ERROR: Unsupported angular quadrature (QuadMeth$) in

EchoMethod."
STOP

END SELECT
PRINT #4, al$
PRINT *4, LTRIM$("and " + a2$ + " Spatial Quadtrature" + a3$ +*'"
PRINT #4, "Convergence criterion on scalar fluxes: RelChange <

Change ="; Change
PRINT *4,

CASE "A"
IF Eout$ = "FULL" THEN
PRINT #4, *********** **** **** ****************************** ****

PRINT #4, "Problem file : ;UCASE$(Problemfile$); TAB(44); "nk
Angular Ordinates :"; nk

PRINT #4, "Output file : ;UCASE$(Outfile$); TAB(44);
"Quadrature Method : ;UCASE$(QuadMeth$) + LTRIM$(STR$(nk))

PRINT #4, "Tk file : ; CASE$(TKfile$); TAB(44); "Negative
Flux Fixups : "; UCASE$(Flfix$)

PRINT 44, "Max Iterations :;Itermax%; TAB(44); "Reset Old Fluxes
* ,ResetAllFluxes$

PRINT 44, "File Identifier : ;Ident$; TAB(44); "Solution Tolerance

PRINT t4, USING "##''";Change

PRINT #4,*****************************

PRINT *4, StartTime$; TAB(17); StartDate$; TAB(35); V$
PRINT 04,
IF DevEchoS = "OUT" THEN PRINT #4, LTRIM$(a2$ + "- )

ELSE
PR INT 04,~~ ********* ***************

PRINT #4, StartTimeS; TAB(17); StartDate$; TAB(35); VS
PRINT #*4,
PRINT h4, LTRIM$(a2$ +"- )

96



END I F
END SELECT
CLOSE #4

RETURN

InitializeProblem:
IF NewProblem% THEN
nx =0
FOR ir = 1 TO nr

nx = nx + nc(ir)
NEXT ir
REDIM Fa(nx, nk), Fx(nx, rik), J(nx, nk), Jinc(nk)
REDIM FluxA(nx), FluxX(nx), Sigma(nx), c(nx), Source(nx)
REDIM Sa(nx), Sx(nx), dx(nx), CellCtrX(nx)
ix =0
FOR ir = 1 TO nr

WidthX = (Xbdy(ir) - Xbdy(ir - 1)) / nc(ir)
FOR ic = 1 TO nc(ir)

ix = ix + 1
Sigma(ix) = SigmaR(ir)
c(ix) = cR(ir)
Source(ix) = SourceR(ir)
dx(ix) = WidthX
CellCtrX(ix) = Xbdy(ir - 1) + (ic - .5) *WidthX

NEXT ic
NEXT ir
ELSE
SELECT CASE DifMeth$

CASE "DD"
REDIM Fa(nx, nk), J(nx, nk), Jinc(nk)

CASE "LD', -SC-, 'LC', 'LN', 'SA-, 'LA", PEC"
REDIM Fa(nx, nk), Fx(nx, nk), J(nx, nk), Jinc(nk)

END SELECT
END IF
IF jincib = 0 THEN 'No incident current, so don't worry about type
FOR k = nk TO nk / 2 + 1 STEP -1

Jinc(k) = 0
NEXT k
ELSE
SELECT CASE tinclb

CASE -1 'Lambertian incident current
FOR k = nk TO nk / 2 + 1 STEP -1

Jinc(k) = mu(k) * 4 * jincib
NEXT k

CASE 0 'Isotropic Surface Source
FOR k = nk To nk / 2 + 1 STEP -1

Jinc(k) = 2 * jincib
NEXT k

CASE 0 TO 1 'Collimated Beam
mu0 tincib
k0 nk + 1
FOR k = nk TO nk / 2 + 1 STEP -1

Jinc(k) =0
IF mu0 <= mu(k) THEN kO = k

NEXT k
'kO is index of smallest mu (in quadrature set) <= mu0
IF kO > nk THEN

'muO > largest mu~k)
Jinc(nk) =jinclb * (2 / w(nk))

ELSEIF mu0 mu(k0) THEN
'mu0 = some mu~k)
Jinc(kG) = jinclb * (2 / w(k0))

97



ELSEIF kO = nk / 2 + 1 THEN
'muO < smallest pos. rnu(k)
Jinc(kO) = jincib * (2 / w(kO))

ELSE
'mu(kO-l) < muO < mu(kO) so interpolate

jinc(kO) = jincib * (muO -mu(kO -1)) / (mu(kO) - mu(kO-1)
Jinc (kO) = Jinc (kO) * (2 / w(kO)) (mu (U) / muO)
Jinc(kO - 1) = jincib *(muO -mu(kO)) /(mu~kO - 1) - mu(kO))
Jinc(kO - 1) = Jinc(kO -1) *(2 / w(kO -1)) * (mutkO - 1) / muO)

END IF
END SELECT
END IF
IF jincrb = 0 THEN 'No incident current, don't worry about type
FOR k = 1 TO nk / 2

Jinc(k) =0
NEXT k
ELSE
SELECT CASE tincrb

CASE -1 'Lambertian incident current
FOR k = 1 TO nk / 2

Jinc(k) = mu(k) * 4 * jincrb
NEXT k

CASE 0 'Isotropic Surface Source
FOR k = 1 TO nk /2

Jinc(k) = -2 *jincrb

NEXT k
CASE 0 TO 1 'Collimated Beam

muO -tincrb
kG 0
FOR k = 1 TO nk /2

Jinc(k) = 0
IF muG >= mu(k) THEN kG = k

NEXT k
'kG is index of least negative mu (in quadrature set) <= muG

IF kG < 1 THEN
'muG < most neg. mu(k)
Jinc(l) =-jincrb * (2 / w(l))

ELSEIF muG mu(kG) THEN
'muG some mu(',)

Jinc(kO) =-jincrb * (2 / w(kG))
ELSEIF kG nk / 2 THEN

'muG > least neg. mu(k)
Jinc(kG) = -jincrb * (2 / w(kG))

ELSE
'mu(kG) < muG < mu(kG+l) so interpolate

jinc(kG) = -jincrb *(2 / w(kG)) * (mu(kO) / muG)
Jinc(kG) =Jinc(kG) *(muG mu(kG + 1)) /(mu(kG) - mu(kG + 1))
Jinc(kG + 1) = -jincrb * (2 /w(kG + 1)) (mu(kG + 1) /muG)
Jinc WG + 1) = Jinc WG + 1) *(n'uG - mu WG)) (mu (kG + 1) -mu(kG))

END IF
END SELECT

END IF
RETURN

SnSolve:
iter% = 0
GOSUB UpdateSourc- TermArrays
DO

DO
iter% = iter% + 1
GOSUB EnterLeftEdge
GOSUP WalkRight
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GOSUB EnterRightEdge
GOSUB WalkLeft
GOSUB UpdateFluxesAndTestConvergence
GOSUB UpdateSourceTermArrays

LOOP UNTIL Converged% OR (iter% >= Itermax%)
IF Converged% THEN

EXIT DO
ELSE

BEEP
PRINT "Not converged. MaxChangeObs ="; MaxChangeObs;
PRINT " after"; iter%; "iterations."
IF Choose("Perform additional iterations? (y/n): ") THEN

DO
INPUT "Additional number to do: ", IterAdditional%

LOOP UNTIL IterAdditional% > 0
Itermax% = Itermax% + IterAdditional%

ELSE
EXIT DO

END IF
END IF

LOOP
RETURN

EnterLeftEdge:
SELECT CASE tlb

CASE 0 'Vacuum
FOR k = nk TO nk / 2 + 1 STEP -1

J(0, k) = Jinc(k)
NEXT k

CASE 1 'Symmetry
FOR k = nk TO nk / 2 + 1 STEP -1

J(O, k) = Jinc(k) - J(0, nk - k + 1)
NEXT k

CASE 0 TO 1 'Specular Albedo
FOR k = nk TO nk / 2 + 1 STEP -1

J(0, k) = Jinc(k) - tlb * J(0, nk k + 1)
NEXT k

CASE -1 TO 0 'Grey Albedo
Jminus = 0
FOR k 1 TO nk / 2

Jminus = Jminus - J(0, k) * w(k)
NEXT k
Jminus = Jminus * .5
Fplus = Jminus * 4 * ABS(tlb)
FOR k = nk TO nk / 2 + 1 STEP -1

J(0, k) = Jinc(k) + Fplus * mu(k)
NEXT k

END SELECT
RETUR N

WalkRight:
'iprint "Starting WalkRight, iter% =";iter%
SELECT CASE DifMeth$
CASE "DD"

FOR k = nk TO nk / 2 + 1 STEP -1
FOR ix = 1 TO nx

StepDD J(ix - 1, k), J(ix, k), Sa(ix), dx(ix), Sigma(ix),
mu(k), Fa(ix, k)

NEXT ix
NEXT k

CASE "LD"
'LD uses same Step algorithm as LN, but using a Pade expansion
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'for exp(-eps ) in MakeP converts implicitly to LD
' Note this method involves NO Rotational Fixup
FOR k = nk TO nk / 2 + 1 STEP -1

FOR ix = 1 TO nx
Fin = J(ix - 1, k) / mu(k)
StepLN Sigma~ix), dx(ix), mu(k), Fin, Sa(ix), Sx(ix), Fout,

Fa~ix, k), Fx(ix, k)
J(ix, k) = Fout * mu(k)

NEXT ix
NEXT k

CASE "SC"
FOR k = nk TO nk / 2 + 1 STEP -1

FOR ix =1 TO nx
Fin =J(ix - 1, k) / mu~k)
StepSC Sigma~ix), dx(ix), mu~k), Fin, Sa~ix), Sx(ix), Fout,

Fa(ix, k), Fx(ix, k)
J(ix, k) = Fout * mu~k)

NEXT ix
NEXT k

CASE "LC"I
FOR k = nk TO nk / 2 + 1 STEP -1

FOR ix =1 TO nx
Fin =J(ix - 1, k) / mu(k)
StepLC Signa~ix), dx(ix), mu~k), Fin, Sa~ix), Sx~ix), Fout,

Fa~ix, k), Fx(ix, k)
J(ix, k) = Fout * mu~k)

NEXT ix
NTEXT k

CASE "LN'I
FOR k = nk TO nk /' 2 + 1 STEP -1

FOR ix =1 TO nx
Fin =J(ix - 1, k) / mu~k)
StepLN Sigma(ix), dx(ix), mu(k), Fin, Sa~ix), Sx(ix), Fout,

Fa~ix, k), Fx(ix, k)
J(ix, k) = Fout * mu~k)

NEXT ix
NEXT k

CASE "SA"I
FOR k = nk TO nk / 2 + 1 STEP -1

FOR ix =1 TO nx
Fin =J(ix - 1, k) / mu~k)
StepSA Sigma~ix), dx~ix), mu~k), Fin, Sa~ix), Sx(ix), Fout,

Fa(ix, k), Fx~ix, k)
J~ix, k) = Fout * mu~k)

NEXT ix
NEXT k

CASE "LA"
FOR k = nk TO nk / 2 + 1 STEP -1

FOR ix =1 TO nx
Fin =J~ix - 1, k) / mu(k)
StepLA Sigma~ix), dx~ix), mu~k), Fin, Sa~ix), Sx(ix), Fout,

Fa(ix, k), Fx~ix, k)
J~ix, k) = Fout * mu~k)
'lprint j~ix-l,k), j(ix,k), Sa~ix)
'lprint (sigme~ix) * dx(ix) * 0.5 / abs(mu~k))), mu(k),

Fa (ix, k)
NEXT ix

NEXT k
CASE "EC'"

FOR k = nk TO nk / 2 + 1 STEP -1
FOR ix =1 TO nx

Fin =J~ix - 1, k) / mu~k)
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StepEC Sigma(ix), dx(ix), mu(k), Fin, Sa(ix), Sx(ix), Fout,
Fa(ix, k), Fx(ix, k)

J(ix, k) = Fout * mu(k)
NEXT ix

NEXT k
END SELECT

RETURN

EnterRightEdge:
SELECT CASE trb

CASE 0 'Vacuum
FOR k = 1 TO nk / 2

J(nx, k) = Jinc(k)
NEXT k

CASE 1 'Symmetry
FOR k = 1 TO nk / 2

J(nx, k) = Jinc(k) - J(nx, nk - k + 1)
NEXT k

CASE 0 TO 1 'Specular Albedo
FOR k = 1 TO nk / 2

J(nx, k) = Jinc(k) - trb * J(nx, nk - k + 1)
NEXT k

CASE -1 TO 0 'Grey Albedo
Jplus = 0
FOR k = nk TO nk / 2 + 1 STEP -1

Jplus = Jplus + J(nx, k) * w(k)
NEXT k
Jplus = Jplus *.5

Fminus = Jplus * 4 * ABS(trb)

FOR k = 1 ij nk / 2
J(nx, k) = Jinc(k) + Fminus * mu(k)

NEXT k
END SELECT
RETURN

WalkLeft:
'Iprint "Starting WalkLeft, iter% =";iter%
SELECT CASE DifMeth$
CASE "DD"

FOR k = 1 TO nk / 2
FOR ix = nx TO 1 STEP -1

StepDD J(ix, k), J(ix - 1, k), Sa(ix), dx(ix), Sigma(ix),
mu(k), Fa(ix, k)

NEXT ix
NEXT k

CASE "LD"
'LD uses same Step algorithm as LN, but using a Pade expansion
'for exp(-eps) in MakeP converts implicitly to LD
'Note this method involves NO Rotational Fixup
FOR k = 1 TO nk / 2

FOR ix = nx TO 1 STEP -1
Fin J(ix, k) / mu(k)
StepLN Sigma(ix), dx(ix), -mu(k), Fin, Sa(ix), -Sx(ix), Fout,

Fa(ix, k), Fxkix, k)

'Walk leftward, so reflect cell, hence, use negative of mu and Sx
Fx(ix, k) = -Fx(ix, k) 'and also get back negative of Fx
J(ix - 1, k) = Fout * mu(k)

NEXT ix
NEXT k

CASE "SC"
FOR k = 1 TO nk / 2

FOR ix = nx TO 1 STEP -1
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Fin = J(ix, k) / mu(k)
StepSC Sigma(ix), dx(ix), -mu(k), Fin, Sa(ix), -Sx(ix), Fout,

Fa(ix, k), Fx(ix, k)
'Walk leftward, so reflect cell, hence, use negative of mu and Sx

J(ix - 1, k) = Fout * mu(k)
NEXT ix

NEXT k
CASE "LC"

FOR k = 1 TO nk / 2
FOR ix = nx TO 1 STEP -1

Fin = J(ix, k) / mu(k)
StepLC Sigma(ix), dx(ix), -mu(k), Fin, Sa(ix), -Sx(ix), Fout,

Fa(ix, k), Fx(ix, k)
'Walk leftward, so reflect cell, hence, use negative of mu and Sx

Fx(ix, k) = -Fx(ix, k) 'and also get back negative of Fx
J(ix - 1, k) = Fout * mu(k)

NEXT ix
NEXT k

CASE "LN"
FOR k = 1 TO nk / 2

FOR ix = nx TO 1 STEP -1
Fin = J(ix, k) / mu(k)
StepLN Sigma(ix), dx(ix), -mu(k), Fin, Sa(ix), -Sx(ix), Fout,

Fa(ix, k), Fx(ix, k)
'Walk leftward, so reflect cell, hence, use negative of mu and Sx

Fx(ix, k) = -Fx(ix, k) 'and also get back negative of Fx
J(ix - 1, k) = Fout * mu(k)

NEXT ix
NEXT k

CASE "SA"
FOR k = 1 TO nk / 2

FOR ix = nx TO 1 STEP -1
Fin = J(ix, k) / mu(k)
StepSA Sigma(ix), dx(ix), -mu(k), Fin, Sa(ix), -Sx(ix), Fout,

Fa(ix, k), Fx(ix, k)
'Walk leftward, so reflect cell, hence, use negative of mu and Sx

Fx(ix, k) = -Fx(ix, k) 'and also get back negative of Fx
J(ix - 1, k) = Fout * mu(k)

NEXT ix
NEXT k

CASE "LA"
FOR k = 1 TO nk / 2

FOR ix = nx TO 1 STEP -1
Fin = J(ix, k) / mu(k)
StepLA Sigma(ix), dx(ix), -mu(k), Fin, Sa(ix), -Sx(ix), Fout,

Fa(ix, k), Fx(ix, k)
'Walk leftward, so reflect cell, hence, use negative of mu and Sx

Fx(ix, k) = -Fx(ix, k) 'and also get back negative of Fx
J(ix - 1, k) = Fout * mu(k)
'lprint j(ix-l,k), j(ix,k), Sa(ix)
'lprint (sigma(ix) * dx(ix) * 0.5 / abs(mu(k))), mu(k),

Fa(ix,k)
NEXT ix

NEXT k
CASE "EC"

FOR k = 1 TO nk / 2
FOR ix = nx TO 1 STEP -1

Fin = J(ix, k) / mu(k)
StepEC Sigma(ix), dx(ix), -mu(k), Fin, Sa(ix), -Sx(ix), Fout,

Fa(ix, k), Fx(ix, k)
'Walk leftward, so reflect cell, hence, use negative of mu and Sx

Fx(ix, k) = -Fx(ix, k) 'and also get back negative of Fx
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J(ix - 1, k) =Fout * rnu(k)
NEXT ix

NEXT k
END SELECT

RETURN

UpdateFluxesAndTestConvergence:
MaxChangeObs = 0
SELECT CASE DifMeth$
CASE "DD"
Sum = 0
FOR k I TO nk

Sum =Sum + w(k) * J(0, k) /mu(k)
NEXT k
BdyFlux =Sum / 2
FOR ix 1 TO nx

Sum =0

FOR k =1 To nk
Sum =Sum + w(k) * Fa(ix, k)

NEXT k
FluxNewA = Sum / 2
IF (ABS(FluxNewA) <= Change) AND (ABS(FluxA(ix)) <= Change) THEN

ChangeObs = MAX(ABS(FluxNewA), ABS(FluxA(ix)))
ELSE

ChangeObs =ABS(FluxNewA - FluxA(ix)) * 2 /(FluxNewA +
FluxA(ix))

END IF
MaxChangeObs = MAX(MaxChangeObs, Changeobs)
FluxA(ix) = FluxNewA
sum = 0
FOR k =1 To nk

Sum =Sum + w(k) * J(ix, k) / mu(k)
NEXT k
FluxX(ix) = (Sum / 2) - BdyFlux
BdyFlux = Sum / 2

NEXT ix
CASE "LN"
FOR ix =1 TO nx

SumA =0

sumix 0
FOR k =1 TO nk

SumA = SumA + w(k) * Fa~ix, k)
SumX = SumnX + w(k) * Fx(ix, k)

NEXT k
FluxNewA = SumA /2
FluxNewX = SumX /2
IF (ABS(FluxNewA) <= Change) AND (ABS(FluxA(ix)) <= Change) THEN
ChangeObs =MAX(ABS(FluxNewA), ABS(FluxA~ix)))

ELSE
ChangeObs ABS(FluxNewA - FluxA(ix)) * 2 / (FluxNewA +

FluxA(ix))
END IF
MaxChangeObs =MAX(MaxChangeObs, ChangeObs)
FluxA(ix) = FluxNewA
FluxX(ix) = FluxNewX
IF fixup% AND ABS(FluxX(ix)) > FluxA(ix) THEN

FluxX(ix) =SGN(FluxX(ix)) * FluxA(ix)
END IF

NEXT ix
CASE -LD-, -SC", -LC-, -SA", "LA", EC-
FOR ix =1 TO nx

SumA =0
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SuxX = 0
FOR k = 1 TO nk

suxnA = SumA + w(k) * Fa(ix, k)
sumx = SurnX + w(k) * Fx(ix, k)

NEXT k
FluxNewA = SuinA /2
FluxNewX = SumX /2
IF (ABS(FluxNewA) <= Change) AND (ABS(FluxA(ix)) <= Change) THEN
ChangeObs =MAX(ABS(FluxNewA), ABS(FluxA(ix)))

ELSE
ChangeObs =ABS(FluxNewA - FluxA(ix)) * 2 /(FluxNewA +

FluxA(ix))
END IF
MaxChangeObs =MAX(MaxChangeObs, Changeobs)
FluxA(ix) = FluxNewA
FluxX(ix) = FluxNewX

NEXT ix
END SELECT

LOCATE 15, 1
PRINT 'Working "; DifMeth$; TAB(15);
tirniters = (TIMER - StartClock) / iter% /60
PRINT USING "--> ##.#";tirniters;

PRINT " min/iter ";
IF (iter% = 1) AND (iterl% > 1) THEN
LOCATE 16, 15
timiters = tirniters * iterl%
PRINT USING "Est ~####;tirniters;
PRINT " min to go

END IF
LOCATE 18, 1
PRINT " After Iteration"; iterl%; "MaxChangeObs =;MaxChangeObsi;

PRINT "; iter%; ";MaxChangeObs;

iterl% = iter%
MaxChangeObsi = MaxChangeobs
PRINT
Converged% = (MaxChangeobs < Change-)

RETURN

UpdateSourceTermArrays:
SELECT CASE DifMeth$
CASE "DD"

FOR ix =1 TO nx
Sa(ix) = c(ix) * Sigma~ix) * FluxA(ix) + Source(ix)

NEXT ix
CASE "LC"

FOR ix = 1 TO nx
Sa(ix) = c(ix) * Sigma~ix) * FluxA~ix) + Source(ix)
Sx(ix) = c(ix) * Sigma(ix) * FluxX(ix)
'Implement Negative Source Fixup as required for LC
IF ABS(Sx(ix)) > Sa(ix) THEN
Sx(ix) = SGN(Sx(ix)) * Sa(ix)

END IF
NEXT ix

CASE "LD", "LN", "SC", "SA", "LA", "EC"
FOR ix = 1 TO nx

Sa(ix) = c(ix) * Sigma(ix) * FluxA(ix) + Source~ix)
Sx(ix) = ccix) * Sigma(ix) * FluxX(ix)

NEXT ix
END SELECT

RETURN
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CalculateResults:
REDIM JPlusBdy(nr), JMinusBdy(nr), JNetBdy(nr), FluxBdy(nr)
REDIM FluxAveR(nr), Flu>:XR(nr)
ix = 0
ir = 0
GOSUB CalculateRegionBoundaryResults
'left bdy of first region
FOR ir = 1 TO nr

GOSUB CalculateRegionAverageScalarFiux
'ir'th region
GOSUB CalculateRegionBoundaryResults
'right bdy of ir'th region

NEXT ir
RETURN

CalculateRegionBoundaryResults:
Sum = 0
FOR k =nk TO nk / 2 + 1 STEP -1

Sum =Sum + w(k) *J(ix, k)
NEXT k
JPlusBdy(ir) = Sum /2
Sum = 0
FOR k =1 TO nk / 2

Sum =Sum + w(k) *J(ix, k)
NEXT k
JMinusBdy(ir) = -Sum / 2
JNetBdy(ir) = JPlusBdy(ir) -JMinusBdy(ir)

Sum = 0
FOR k I TO nk

Sum =Sum + w(k) * J(ix, k) / mu(k)
NEXT k
FluxBdy(ir) = Sum / 2

RETURN

CalculateRegionAverageScalarFiux:
SumA = 0
SumX = 0
Sumi = 0
FOR ic = 1 TO nc(ir)

ix = ix + 1
Sum.A = Sum.A + FluxA(ix)
Sum.X = SumX + FluxX(ix)
Sumi = Sumi + (2 *ic - 1) *FluxA(ix)

NEXT ic
FluxAveR(ir) = Sum.A /nc(ir)
FluxXR(ir) = -3 * SumA / nc(ir) + (SumX + 3 *Sumi) /nc(ir) '~2

RETURN

VerifyRegionsByBalanceEquat ion:
MaxRegrerr =0!

RegBalFlag$=
Regflag% = False
FOR ir = 1 TO nr

SumBL = (JNetBdy(ir) - JNetBdy(ir - 1)) / (Xbdy(ir) - Xbdy(ir-1)
+ SigmaR(ir) * FluxAveR(ir)

SumBR = (cR(ir) * SigmaR(ir) * FluxAveR(ir) + SourceR(ir))
IF (SumBL <> 0) OR (SumBR <> 0) THEN

Regrerr = ABS(SumBL - SumBR) *2 / (ABS(SumBL) + ABS(SumBR))
ELSE

Regrerr = 0
END IF
IF Regrerr < 2 THEN MaxRegrerr =MAX(MaxRegrerr, Regrerr)
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IF MaxRegrerr > Change THEN
Regflag% = True
RegBalFlag$ = LTRIM$(RegBalFlag$ + STR$(ir))

END IF
NEXT ir
RETURN

LPrintRegionSummary:
SELECT CASE DevEcho$

CASE "LPTI"
OPEN "LPTl:" FOR OUTPUT AS #4

CASE "SCREEN"
OPEN "SCRN:" FOR OUTPUT AS #4

CASE "OUT"
OPEN Outfile$ FOR APPEND AS #4

END SELECT
SELECT CASE DifMeth$

CASE "DD"
IF fixup% THEN

PRINT #4, "DDF Negative Flux Fixup Enabled"
ELSE

PRINT #4, "DD No Flux Fixup"
END IF

CASE "LC"
PRINT #4, "LC Source Rotation (Sx<=Sa) Fixup ALWAYS Enabled"

CASE "LN"
IF fixup% THEN

PRINT #4, "LNF Scalar Flux Rotation (PhiX<PhiA) Fixup Enabled"
ELSE

PRINT #4, "LN No Flux Fixup"
END IF

CASE "EC"
IF SwitchEC% THEN

PRINT #4, "EC to LC Enabled (beta <=";
ELSE

PRINT #4, "EC Normal (beta > ";
END IF
PRINT #4, USING "*#.###..; SwECtoLCSetPt;
PRINT #4, ")"

CASE ELSE
PRINT #4, DifMeth$

END SELECT
PRINT i4, "Execution Time
PRINT #4, USING "##.###*"; ExecMin;
PRINT #4, " min "
IF Converged% THEN PRINT #4, "Converged ";
PRINT #4, "After"; iter%; "iterations, MaxChangeObs ="; MaxChangeObs
PRINT #4,
PRINT #4, "", " J plus", " J minus", " J net", " Boundary Flux"
PRINT #4, "Region #", " flux ave", " flux x-moment"
PRINT #4,
ir = 0
PRINT #4,
PRINT #4, USING " +#.##### .... ; JPlusBdy(ir); JMinusBdy(ir);
PRINT #4, USING " +*.###### . ; JNetBdy(ir); FluxBdy(ir)
FOR ir = 1 TO nr

PRINT #4, ir,
PRINT 04, USING " +#.###### . ; FluxAveR(ir); FluxXR(ir)
PRINT *4, "",
PRINT #4, USING " +#.###### . ; JPlusBdy(ir); JMinusBdy(ir);
PRINT *4, USING +# #*#### "; JNetBdy(ir); FluxBdy(ir)

NEXT ir
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IF (MaxMom0rerr > MomTol) THEN
Mom0IntFlag$ = " 0th: VIOLATION"

END IF
IF (MaxMomlrerr > MomTol) THEN
MomlIntFlag$ = " 1st: VIOLATION"

END IF
PRINT #4,
PRINT #4, "Moment Balances: "; Mom0IntFlag$;
PRINT #4, USING " MaxRelErr: ##.### ..... ; MaxMom0rerr;
PRINT #4, " ";
PRINT #4, USING "##.#### .... ; MomTol
SELECT CASE DifMeth$

CASE "DD-, "SC"
CASE ELSE

PRINT #4, TAB(18); MomlIntFlag$;
PRINT #4, USING " ##.#### ..... ; MaxMomlrerr;
PRINT #4, " 5
PRINT #4, USING "##.### . MomTol

END SELECT
PRINT #4, " Region Balances: ";

IF Regflag% = True THEN
PRINT #4, TAB(24); LTRIM$("VIOLATED in " + RegBalFlag$ + ":

ELSE
PRINT #4, "CONSERVED"; TAB(48);

END IF
PRINT #4, USING "##.### ..... ; MaxRegrerr;
PRINT #4, " 5 ";
PRINT #4, USING "##.### .... ; Change
PRINT #4, : PRINT #4,
CLOSE #4
RETURN

RunSummary:
SELECT CASE DevEcho$

CASE "LPTI"
OPEN "LPTl:" FOR OUTPUT AS #4

CASE "SCREEN"
OPEN "SCRN:" FOR OUTPUT AS #4

CASE "OUT"
OPEN Outfile$ FOR APPEND AS #4

END SELECT
Min7'nge&Reg = 1E+15
ilotogl -2: ihitogl = 0
FOR it = 1 TO itim

GOSUB ToggleDifMeth
IF DifMeth$ = "EC" THEN iec = it
MinChangeReg = MIN(MinChangeReg, RErranal(it))
RelRtim(it) = (1000! * Rtim(it))
RelRErranal(it) = (1000! * RErranal(it))

NEXT it
IF iec < 1 OR iec > itim THEN iec = 1
PRINT #4, ************************************************************

PRINT #4,
PRINT #4, " RunSummary: Relative Processing times and Region

MaxChanges"
PRINT *4, " Method Exec Min RelTime RegMaxErr

RelRegErr"
PRINT #4,
ilotogl -2: ihitogl = 0
FOR it = 1 TO itim

GOSUB ToggleDifMeth
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IF (DifMeth$ * DD" OR DifMeth$ ="LN") AND (fixup%) THEN
fixa$ = "F"

ELSE fixa$=
END IF
PRINT #4, TAB(8); LTRIM$(DifMeth$ + fixa$); TAB(14);
PRINT #4, USING "**.*#;Rtim(it);

PRINT #4, TAB(26);
PRINT #4, USING **.#";CSNG(RelRtim(it) / RelRtim(iec));
PRINT #4, TAB(37);
PRINT *4, USING -##.####^^^^'; RErranal(it);
PRINT #4, TAB(51);
IF MinChangeReg <> 0 THEN

PRINT #4, USING -##*.*##"; CSNG(RelRErranal(it) /(1000*
MinChangeReg))

ELSE PRINT #4,------
END IF

NEXT it
PRINT #4, :PRINT #4,
CLOSE #4
RETURN

CreateTKDataFile:
SELECT CASE CmdProf$

CASE *""
DO

INPUT "Output Data to a TK File? (YIN )",Qtkf$
Qtkf$ = UCASE$(LEFT$(LTRIM$(Qtkf$), 1))

LOOP UNTIL INSTR(-YN", Qtkf$) AND LEN(Qtkf$) I
CASE "A"

END SELECT
IF UCASE$(Qtkf$) = "Y" THEN

SELECT CASE CmdProf$
CASE "S"

DO
INPUT "TK File name? ",TKfile$

LOOP WHILE TKfile$ <> "
OPEN TKfile$ FOR APPEND AS #3

CASE "A"
OPEN TKtile$ FOR APPEND AS *3

END SELECT
IF (DifMeth$ = "DD" OR DifMeth$ = "LN") AND (fixup%) THEN

fixa$ = "F"
ELSE fixa$=
END IF
CALL PrtTK(LTRIM$("cR-" + DifMefh$ + fixa$), cR(), 1, nr)
CALL PrtTK(LTRIM$("SigR_ 4- DifMeth$ + fixa$), SigiaRo, 1, nr)
CALL PrtTK(LTRIM$("Src-" + DifMeth$ + fixa$), SourceRo, 1, nr)
REDIM cellsnc(l TO nr)
FOR ir = 1 TO nr

cellsnc(ir) = nc(ir)
NEXT ir
CALL PrtTK(LTRIM$("nc-* + DifMeth$ + fixa$), cellsnc(), 1, nr)
CALL PrtTK(LTRIM$(*Xb-" + DifMeth$ + fixa$), Xbdy(), 0, nr)
CALL PrtTK(LTRIMS("Jposb_ " + DifMeth$ + fixa$), JPlusBdy(), 0, nr)
CALL PrtTK(LTRIM$("Jnegb-2 + DifMeth$ + fixa$), JMinusBdy(), 0, nr)
CALL PrtTK(LTRIM$("Jnetb_- "+ DifMeth$ + fixa$), JNetBdyo, 0, nr)
CALL PrtTK(LTRIM$("Phib_ " + DifMeth$ + fixa$), FluxBdy0, 0, nr)
REDIM Xctr(nr)
FOR ir = 1 TO nr

Xctr(ir) = Xbdv(ir - 1) + (Xbdv(ir) - Xbdy(ir - 1)) /1 2!
NEXT ir
CALL PrtTK(LTFIM'$("Xctr_" + DifMeth$ + fixa$), Xctro, 1, nr)
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CALL PrtTK(LTRIM$(-PhiA_ " + DjfMeth$ + fixa$), FluxAveR(). 1, nr)
CALL PrtTK(LTRIM$('PhiX_" + DifMeth$ + fixa$), FluxXR0, 1, nr)
,establish a global flux variable
ng = 2 * nr
REDIM XGlbl(O TO ng), FlxGlbl(Q TO ng)
ig = 0: ix = 0: jy = 1
DO

XGlbl(ig) = Xbdy(ix)
FlxGlbl(ig) = FluxBdy(ix)
ix = ix + 1
ig = ig + 1
IF ix <> (nr + 1) THEN

XGlbl(ig) = Xctr(iy)
FlxGlbl(ig) = FluxAveR(iy)
iy = iy + 1
ig = ig + 1

END IF
LOOP UNTIL ix = (nr + 1)
CALL PrtTK(LTRIM$("XG-" + DifMeth$ + fixa$), XGlbl(), 0, ng)
CALL PrtTK(LTRIM$("PhiG_" + DifMeth$ + fixa$), FlxGlbl(), 0, ng)
CALL PrtTK(LTRIM$("Time_" + DifMe~h$ + fixa$), Rtimo, itirn, itim)
PRINT 43,
CLOSE #3

END IF
RETURN

SUB AltMenu STATIC
SHARED Problemfile$, OutfilP5, QoutfS, TKfile$, Qtkf$, DifMeth$,
TotDi fMeth$
SHARED ilotogl, ihitogl, QuadMeth$, fixup%, Flfix$, Itermax%, Change
SHARED MornTol, nk, Ident$, again%, NewProblen%, ResetAllFluxes$
SHARED SwECtoLCSetPt
Variables:
CLS
PRINT"

PRINT "Problemr File : ;UCASE$(Problemfile$); TAB(40); "nk Angular
Ordinates :"; nk
PRINT "Output file : ;UCASE$(Outfile$); TAB(40); "Quadrature
Method :"; UCASE$(QuadMeth$) + LTRIM$(STR$(nk))
PRINT "Tk file : "; UCASE$(TKfile$); TAB(40); 'Negative Flux
Fixups : "; UCASE$(Flfix$)
PRINT "Max Iterations :;Itermax%; TAB(40); "Reset All Old Fluxes
"ResetAllFluxes$

PRINT "Moment Tolerance :";
PRINT USING "~*~*~~;MomTol;
PRINT TAB(40); "Solution Tolerance "

PRINT USING "#.#"";Change

PRINT
PRINT "Spatial Quadrature Methods ";TotDifMeth$

PRINT "File Identifier : ;Ident$

PRINT

PRINT
PRINT "Type to change "; TAB(40); "Type to change
PRINT "-------------------------" TAB(40) ; --

IF NOT again% THEN
PRINT " PF Problem File "; TAB(40); " NK Angular Ordinates
PRINT " 0 Data Output File"; TAB(40); " QM Quadrature Method"
PRINT " TK TK Solver Output File"; TAB(40); "FF Neg Flux Fixups
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ELSE
PRINT " -- Problem File "; TAB(40); " NK # Angular Ordinates
PRINT " -- Data Output File"; TAB(40); " QM Quadrature Method"
PRINT " -- TK Solver Output File"; TAB(40); " FF Neg Flux Fixups

END IF
PRINT " MI Max Iterations Allowed "; TAB(40); " TL Change
Tolerances"
PRINT " AS Add Spatial Quad Method "; TAB(40); NF Reset Flux
Usage Toggle"
PRINT " CS Clear Spatial Quad Methods "; TAB(40); " FL DOS File
Directory"
PRINT " N None of the above"
PRINT
INPUT Response$
LOCATE 12, 1
FOR i = 1 TO 12

PRINT TAB(79);
NEXT i
LOCATE 12, 1
IF UCASE$(Response$) = "FL" AND NOT again% THEN
INPUT "Path or file: "; fileinq$
FILES (fileinq$)
PRINT : PRINT "Holding 5 Seconds... ": PRINT
SLEEP (5)
ELSEIF UCASE$(Response$) = "PF" AND NOT again% THEN
INPUT "Problem File : "; Problemfile$

ELSEIF UCASE$(Response$) = "0" AND NOT again% THEN
INPUT "Output file (OFF for none) : "; Outfile$
IF UCASE$(Outfile$) = "OFF" THEN

Qoutf$ = "N"
ELSE
Qoutf$ = "Y,
Qtkf$ = *Y"
ippos = 0
ippos = INSTR(Outfile$, ".") - 1
TKfile$ = LTRIM$(MID$(Outfile$, 1, ippos) + ".TKD")

END IF
ELSEIF UCASE$(Response$) = "TK" AND NOT again% THEN
INPUT "Tk file (OFF for none) : "; TKfile$
Qtkf$ = "Y"
IF UCASE$(TKfile$) = "OFF" THEN

Qtkf$ = "N"
END IF
ELSEIF UCASE$(Response$) = "MI" THEN
DO

:NPUT "Maximum Allowable Iterations "; Itermax%
LOOP UNTIL Itermax% > 1

ELSEIF UCASE$(Response$) = "NK" THEN
SELECT CASE QuadMeth$
CASE "S"

DO
PRINT "For Single-Range Gauss Sn, n is total * of mu's."
PRINT "Supported Orders are n = 2, 4, 6, 8, 10 and 12."
PRINT
INPUT "Enter: n = ", nk

LOOP UNTIL (nk >= 2) AND (nk <= 12) AND (nk MOD 2 = 0)
CASE "D"

DO
PRINT "For Double-Range Gauss Sn, n is # of mu's in each range."
PRINT "Supported Orders are n = 1, 2, 3, 4, 6, 8, 10 and 1i."
PRINT
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INPUT "Enter: N = ", nk
LOOP UNTIL nk >= 1 AND nk <= 12 AND ((nk MOD 2 = 0) OR nk < 4)

CASE "M"
DO

PRINT "For Composite Midpoint Rule Sn, n is total # of mu's."
PRINT "The mu's are at the center of equally sized intervals,"
PRINT " and are given equal weights."
PRINT "Supported Orders are n = 2, 4, 6, ... "

PRINT
INPUT "Enter: N = ", nk

LOOP UNTIL nk > 0 AND ((nk MOD 2) = 0)
END SELECT
ELSEIF UCASE$(Response$) = "QM" THEN
DO

PRINT "Select Angular Quadrature Type:": PRINT
PRINT " S - Single Range Gauss-Legendre"
PRINT " D - Double Range Gauss-Legendre"
PRINT " M - Composite Midpoint Rule": PRINT
INPUT "Choice? ( S,D,M ): ", QuadMeth$
QuadMeth$ = UCASE$(LEFT$(LTRIM$(QuadMeth$), 1))

LOOP UNTIL INSTR("SDM", QuadMeth$) AND LEN(QuadMeth$) = 1
ELSEIF UCASE$(Response$) = "FF" THEN
DO

INPUT "Provide Negative Flux Fixups (Enter Y or N only) "; Flfix$
LOOP UNTIL (UCASE$(Flfix$) = "Y") OR (UCASE$(Flfix$) = 'N")
IF UCASE$(Flfix$) = "Y" THEN

Flfix$ = "YES": fixup% = True
ELSE
Flfix$ = "NO": fixup% = False

END IF
ELSEIF UCASE$(Response$) "TL" THEN
DO

INPUT "Tolerance for Solution Convergence (0 to 1) "; Change
LOOP UNTIL Change > 0#
PRINT
DO

INPUT "Tolerance for Moment Balance Comparisons (0 to 1) : "; MomTol
LOOP UNTIL Change > 0#
ELSEIF UCASE$(Response$) = "NF" THEN

DO
INPUT "Reset all Fluxes ? ( Y/N ): ", a$
a$ = UCASE$(LEFT$(LTRIM$(a$), 1))

LOOP UNTIL INSTR("YN", a$) AND LEN(a$) = 1
IF a$ = "Y" THEN

ResetAllFluxes$ = "YES"
ELSE

ResetAllFluxes$ = "NO"
END IF

ELSEIF UCASE$(Response$) = "AS" THEN
IF TotDifMeth$ = " NONE" THEN TotDifMeth$ =
DO

PRINT " Add Spatial Quadrature Method(s) -"
PRINT
PRINT " DD - Diamond Difference MB - DD,LD,LC,SA,LA,and

EC"
PRINT " LD - Linear Discontinuous EL - Entire List
PRINT " SC - Step Characteristic"
PRINT " LC - Linear Characteristic"
PRINT " LN - Linear Nodal"
PRINT " SA - Step Adaptive"
PRINT " LA - Linear Adaptive"
PRINT " E- Exponential Characteristic"
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PRINT
INPUT "Choice? ( DD,LD,SC,LC,LN,SA,LA,EC,MB,EL ): ", DifMeth$
DifMeth$ = UCASE$(LEFT$(LTRIM$(DifMeth$), 2))

LOOP UNTIL INSTR(-ELMBDDLDSCLCLNSALAEC", DifMeth$) AND LEN(DifMeth$) =
2
SELECT CASE DifMeth$

CASE "MB"
TotDifMeth$ = " DD LD LC SA LA EC

CASE "EL"
TotDifMeth$ = " DD LD SC LC LN SA LA EC

CASE ELSE
IF INSTR(TotDifMeth$, DifMeth$) THEN
ELSE

TotDifMeth$ = TotDifMeth$ + LTRIM$(DifMeth$ +
END IF

END SELECT
ELSEIF UCASE$(Response$) = "CS" THEN

TotDifMeth$ = " NONE"
ELSE TF UCASE . Response$) = "N" AND TotDifMeth$ <> " NONE" THEN
IF INSTR(TotDifMeth$, "EC") THEN

CALL SetSwitchECtoLC
LOCATE 12, 1
FOR i = 1 TO 12

PRINT TAB(79);
NEXT i
LOCATE 12, 1

END IF
IF Problemfile$ = "" THEN

LOCATE 12, 1: PRINT "WARNING: No Problem File is Designated"
SLEEP (3)
GOTO Variables

END IF
IF UCASE$(Outfile$) = "OFF" THEN

LOCATE 12, 1: PRINT "WARNING: No Output File is Designated"
PRINT
DO

INPUT "Proceed ? ( Y/N ): ", a$
a$ = UCASE$(LEFT$(LTRIM$(a$), 1))

LOOP UNTIL INSTR("YN", a$) AND LEN(a$) = 1
LOCATE 12, 1
FOR i = 1 TO 10

PRINT TAB(79);
NEXT i
LOCATE 12, 1
IF a$ = "N" THEN GOTO Variables

END IF
GOTO Bottom
END IF
GOTO Variables
Bottom:
I Open files as Necessary
IF NOT again% THEN
OPEN Problemfile$ FOR INPUT AS #1
'check for correct file:
INPUT 61, Ident$
LOCATE 9, 38: PRINT Ident$: LOCATE 12, 1
DO

INPUT "Correct File? ( Y/N/Quit ): ", a$
aS = UCASE$(LEFT$(LTRIM$(a$), 1))

LOOP UNTIL INSTR("YNQ", aS) AND LEN(a$) = 1

SELECT CASE a$
CASE "N"
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CLOSE #1
Problemfile$ =
Ident$ = -
GOTO Variables

CASE 'Q"
END

CASE "Y"
CLS

CASE ELSE
BEEP
PRINT "ERROR: Unsupported choice in OpenProblemFile."
STOP

END SELECT
END IF
I Assign First String toggles and Corresponding Diff Method
ilotogl = 1: ihitogl = 3
DifMeth$ = LTRIM$(MID$(TotDifMeth$, ilotogl, ihitogl))
DifMeth$ UCASE$(LEFTS(LTRIM$(DifMeth$), 2))
END SUB

SUB BeginSets
SHARED Problemfile$, DifMeth$, QuadMeth$, fixup%, Flfix$, Itermax%
SHARED Change, MomTol, nk, TotDifMeth$, Outfile$, Qoutf$, TKfile$
SHARED Qtkf$, Ident$, again%, NewProblem%, ResetA 1lFluxes$
SHARED Mom0IntFlag$, MaxMom0rerr, MomlIntFlag$, MaxMomlrerr
SHARED SwitchEC%, SwECtcLCSetPt

This provides the user with input values
for an initial run.

Problemfile$ = "a:testl.IPT"
DifMeth$ = "DD"
TotDifMeth$ = " NONE"
QuadMeth$ = "S"
fixup% = False
Flfix$ = "NO"
Itermax% = 150
Change = .00001#
MomTol = IE-10
nk = 8
Ident$ =
again% = False
NewProblem% = True
SwitchEC% = False
SwECtoLCSetPt = .0005
ResetAllFluxes$ = "YES"
Outfile$ = "off"
Qoutf ="n"

TKfile$ = "off"
Qtkf$ = *n"
Mom0IntFlag$ = " 0th: CONSERVED": MaxMom0rerr = 0
MomlIntFlaa$ = " 1st: CONSERVED": MaxMomlrerr = 0
END SUB

DEFINT A-H, J, L-M, O-Z
FUNCTION Choose (prompt$) STATIC
CONST False = 0
CONST True = NOT False
DO

PRINT promptS;
INPUT "", ch$
ch$ = UCASE$(LEFTS(LTRIMS(ch$), 1))
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LOOP UNTIL INSTR(-YNl0, ch$) AND LEN(ch$) = 1
IF ch$ = "Y" OR ch$ = "1" THEN

Choose = True
ELSE

Choose = False
END IF
END FUNCTION

DEFSNG H
DEFDBL A-G, ,7, L-M, O-Z
FUNCTION DdxG (x) STATIC
I d/dx g(x) for Newton's Method Root Solving beta in EC
DdxG = 1 / x ^ 2 - (1 / (EXP(x) - 1)) - (1 / (EXP(x) - 1) ^ 2)
END FUNCTION

FUNCTION Gx (x, ro) STATIC
'g(x) = pl(beta)/pO(beta) - ro = 0 Root Solved by Newton's Method
Gx = 1 - (1 / x) + (1 / (EXP(x) - 1)) - ro
END FUNCTION

SUB makeP (p(, e) STATIC
SHARED DifMeth$
'Modified From K. Mathews' Original makeP SUB by G. Sjoden
'Exception: LD Pade exponential inserted in LN model by K. Mathews

CONST imax = 3
DIM pp(-l TO imax) AS DOUBLE
DIM ee AS DOUBLE
IF LBOUND(p) <> -1 OR UBOUND(p) <> imax TV'- =O7
SELECT CASE DifMeth$
CASE "LD"
ee = CDBL(e)
'Forward Iteration: Use Pude qpprox to EXP(-ee)
I (Allows LN algorithm tc qive LD results)
pp(-l) = (6 - ee * 2) / (6 + ee
p(-l) = pp(-l)
pp(0) : (1 - pp(-l)) / ee
p(0) = pp(O)
FOR i = 1 TO imax
pp(i) (1 - i * pp(i - 1)) / ee
p(i) = pp(i)

NEXT i
CASE ELSE 'All other Spatial Quadratures
SELECT CASE (e)
CASE 0

p(-l) = 1
FOP i = 0 TO imax

p(i) = 1 / (i + 1)
NEXT i

CASE IS > 0
ee = CDBL(e)
pp(-l) = EXP(-ee)
p(-l) = pp(-l)
pp(0) = (I - pp(-l)) / ee
p(0) = pp(O)
ife = FIX(e) 'Fix truncates e (does NOT round) to integer value

only
SELECT CASE (ife - 1)

CASE IS <= imax 'Partial Forward Iteration
FOR i = 1 TO (ife - 1)
pp(i) = (1 - i * pp(i - 1)) / ee
p(i) = pp(i)
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PRINT
INPUT "Choice? ( DD,LD,SC,LC,LN,SA,LA,EC,MB,EL ): ", DifMeth$
DifMeth$ = UCASE$(LEFT$(LTRIM$(DifMeth$), 2))

LOOP UNTIL INSTR('ELMBDDLDSCLCLNSALAEC", DifMeth$) AND LEN(DifMeth$) =
2
SELECT CASE DifMeth$

CASE "MB"
TotDifMeth$ = " DD LD LC SA LA EC

CASE "EL"
TotDifMeth$ = " DD LD SC LC LN SA LA EC

CASE ELSE
IF INSTR(TotDifMeth$, DifMeth$) THEN
ELSE

TotDifMeth$ = TotDifMeth$ + LTRIM$(DifMeth$ + .
END IF

END SELECT
ELSEIF UCASE$(Response$) = "CS" THEN

TotDifMeth$ = " NONE"

ELSEIF UCASE$(Response$) = "N" AND TotDifMeth$ <> " NONE" THEN
IF INSTR(TotDifMeth$, "EC") THEN

CALL Set.,witchECtoLC
LOCATE 12, 1
FOR i = I TO 12

PRINT TAB(79);
NEXT i
LOCATE 12, 1

END IF
IF Problemfile$ = "" THEN

LOCATE 12, 1: PRINT "WARNING: No Problem File is Designated"
SLEEP (3)
GOTO Variables

END IF
IF UCASE$(Outfile$) = "OFF" THEN

LOCATE 12, 1: PRINT "WARNING: No Output File is Designated"
PRINT
DO

INPUT "Proceed ? ( Y/N ): ", a$
a$ = UCASE$(LEFT$(LTRIM$(a$), 1))

LOOP UNTIL INSTR("YN", a$) AND LEN(a$) = 1
LOCATE 12, 1
FOR i = 1 TO 10

PRINT TAB(79);
NEXT i
LOCATE 12, 1
IF a$ = "N" THEN GOTO Variables

END TF
GOTO Bottom
END IF
GOTO Variables
Bottom:
I Open files as Necessary
IF NOT again% THEN
OPEN Problemfile$ FOR INPUT AS 41
'check for correct file:
INPUT #1, Ident$
LOCATE 9, 38: PRINT Ident$: LOCATE 12, 1
DO

INPUT "Correct File? ( Y/N/Quit ): ", a$
a$ = UCASE$(LEFT$(LTRIM$(a$), 1))

LOOP UNTIL INSTR("YNQ", a$) AND LEN(a$) = 1
SELECT CASE a$

CASE "N"
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CLOSE #1
Problemfile$ =
Ident$ = -
GOTO Variables

CASE "Q"
END

CASE "Y"
CLS

CASE ELSE
BEEP
PRINT "ERROR: Unsupported choice in OpenProblemFile."
STOP

END SELECT
END IF
' Assign First String toggles and Corresponding Diff Method
ilotogl = 1: ihitogl = 3
DifMeth$ = LTRIM$(MID$(TotDifMeth$, ilotogl, ihitogl))
DifMeth$ = UCASE$(LEFT$(LTRIM$(DifMeth$), 2))
END SUB

SUB BeginSets
SHARED Problemfile$, DifMeth$, QuadMeth$, fixup%, Flfix$, Itermax%
SHARED Change, MomTol, nk, TotDifMeth$, Outfile$, Qoutf$, TKfile$
SHARED Qtkf$, Ident$, again%, NewProblem%, ResetAllFluxes$
SHARED Mom0IntFlag$, MaxMom0rerr, MomlIntFlag$, MaxMomlrerr
SHARED SwitchEC%, SwECtoLCSetPt

This provides the user with input values
for an initial run.

Problemfile$ = "a:testl.IPT"
DifMeth$ = "DD"
TotDifMeth$ = " NONE"
QuadMeth$ = "S"
fixup% = False
Flfix$ = "NO"
Itermax% = 150
Change = .000014
MomTol = 1E-10
nk = 8
Ident$ =
again% = False
NewProblem% = True
SwitchEC% = False
SwECtoLCSetPt = .0005
ResetAllFluxes$ = "YES"
Outfile$ = "off"
Qoutf$ ="n"
TKfile$ = "off"
Qtkf$ = "n"
Mom0IntFlag$ = " 0th: CONSERVED": MaxMom0rerr = 0
MomlIntFlag$ = " 1st: CONSERVED": MaxMomlrerr = 0
END SUB

DEFINT A-H, J, L-M, O-Z
FUNCTION Choose (prompt$) STATIC
CONST False = 0
CONST True = NOT False
DO

PRINT prompt$;
INPUT "", ch$
ch$ = UCASE$(LEFT$(LTRIM$(ch$), 1))
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LOOP UNTIL INSTR("YNI0", ch$) AND LEN(ch$) = 1
IF ch$ = "Y" OR ch$ = "1" THEN

Choose = True
ELSE

Choose = False
END IF

END FUNCTION

DEFSNG H
DEFDBL A-G, J, L-M, O-Z
FUNCTION DdxG (x) STATIC
' d/dx g(x) for Newton's Method Root Solving beta in EC
DdxG = 1 / x ^ 2 - (1 / (EXP(x) - 1)) - (1 / (EXP(x) - 1) 2)

END FUNCTION

FUNCTION Gx (x, ro) STATIC
'g(x) = pl(beta)/pO(beta) - ro = 0 Root Solved by Newton's Method
Gx = 1 - i/ x) + (1 / (EXP(x) - 1)) - ro
END FUNCTION

SUB makeP (pC), e) STATIC
SHARED DifMeth$
'Modified From K. Mathews' Original makeP SUB by G. Sjoden
'Exception: LD Pade exponential inserted in LN model by K. Mathews

CONST imax = 3
DIM pp(-l TO imax) AS DOUBLE
DIM ee AS DOUBLE
IF LBOUND(p) <> -1 OR UBOUND(p) <> imax THEN STOP
SELECT CASE DifMeth$
CASE "LD"
ee = CDBL(e)
'Forward Iteration: Use Pade qpprox to EXP(-ee)
' (Allows LN algorithm to give LD results)
pp(-l) = (6 - ee * 2) / (6 + ee * (4 + ee))

p(-l) = ppk-l)
pp(O) = i- pp(-l)) / ee
p(0) = pp(O)

FOR i = 1 TO imax
pp(i) = (1 - i * pp(i - 1)) / ee
pi) = pp(i)

NEXT i
CASE ELSE 'All other Spatial Quadratures
SELECT CASE (e)
CASE 0

p(-l) : 1
FOR i = 0 TO imax

p(i) = 1 / Ci + 1)
NEXT i

CASE IS > 0

ee = CDBL(e)
pp(-l) = EXP(-ee)
' -1) = pp(-l)

pp(O) = (1 - pp(-l)) / ee

p(0) = pp(o)
ife = FIX(e) 'Fix truncates e (does NOT round) tn integer value

only
SELECT CASE (ife - 1)

CASE IS <= imax 'Partial Forward Iteration
FOR i = 1 TO (ife - 1)
pp(i) = i- i * pp(i - 1)) / ee
pi) = pp(i)
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NEXT i
b# = 1.785714285714286D-02 'Remainder Backward Iteration
'p26 Starting Value, p27(ee)=i/56 Double Precision
I For Single Precision, compute p16 using p17(e)=l/36
FOR i = 26 TO 5 STEP -1
b# = (1 - ee * b#) / i

NEXT i
FOR i = 4 TO (ife + 1) STEP -1
b#= (I - ee * b#) / i
p(i - 1) = b#
NEXT i
CASE IS > imax
FOR i = 1 TO imax 'Total Forward Iteration
pp(i) = (1 - i * pp(i - 1)) / ee
p(i) = pp(i)

NEXT i
END SELECT

CASE ELSE
PRINT : PRINT "Negative argument in SUB MakeP"
PRINT "Execution Halted.": STOP

END SELECT
END SELECT

END SUB

FUNCTION MAX (x, y) STATIC
IF x > y THEN

MAX = x
ELSE

MAX = y
END IF
END FUNCTION

FUNCTION MIN (x, y) STATIC
IF x < y THEN

MIN = x
ELSE

MIN = y
END IF

END FUNCTION

SUB Mom0StepCheck (Fl, Fr, Fa, eps, Sa, DeltaX, mu) STATIC
SHARED MaxMom0rerr, MomTol, Mom0IntFlag$

'Verify 0th Moment Balance of the Boltzmann transport equation for
each direction mu

sumML = (Fr - Fl + eps * Fa)
sumMR = Sa * DeltaX / ABS(mu)
IF (sumML <> 0) OR (sumMR <> 0) THEN
Momrerr = ABS(sumML - sumMR) * 2 / (ABS(sumML) + ABS(sumMR))

ELSE
Momrerr = 0

END IF
IF Momrerr < 2 THEN MaxMom0rerr = MAX(MaxMom0rerr, Momrerr)

END SUB

SUB MomlStepCheck (Fl, Fr, Fa, Fx, eps, Sx, DeltaX, mu) STATIC
SHARED MaxMomlrerr, MomTol, MomlIntFlag$

'Verify ist Moment Balance of the Boltzmann transport equation for
each direction mu

sumML = 3 * (F1 - 2 * Fa + Fr) + (eps * Fx)
sumMR = Sx * Delta) / ABS(mu)
IF (sumML <> 0) OR (sumMR <> 0) THEN
Momrerr = ABS(sumML - sumMR) * 2 / (ABS(sumML) + ABS(sumMR))
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ELSE
Momrerr = 0

END IF
IF Momrerr < 2 THEN MaxMomlrerr = MAX(MaxMomlrerr, Momrerr)

END SUB

FUNCTION ParseNthWord$ (a$, n) STATIC
'for a$ containing words separated by spaces
'returns the n'th word, with word count starting at 1

i =n
'strip leading spaces
b$ = LTRIM$(a$)
'remove n leading words
DO WHILE i > 1 AND b$ <>

'strip first word, up to a space character
k = INSTR(b$, "

IF k THEN
b$ = RIGHT$(b$, LEN(b$) - k + 1)

END IF
'strip leading spaces
b$ = LTRIM$(b$)
i=i-1

LOOP
'remove trailing spaces and words
k = INSTR(b$, " ")
IF k > 0 THEN b$ = LEFT$(b$, k - 1)
ParseNthWord$ = b$
END FUNCTION

SUB PrtTK (labl$, vrbl(), istart, n) STATIC

-> NOTE DEVICE #3 currently used for tk file output <-
Because any variable beginning with H will be single precision,
any data stored using this routine as is will be stored in single
precision. To get full double precision, change hvalue below back
just vrbl(i).

PRINT #3, labl$; ","
J = 0
FOR i = istart TO n

hvalue = vrbl(i)
J=J+ 1
if using this sub to read tk generated data, use j<5
because tk writes 5 datapoints per line, comma delimited
j<4 is used here to accommodate double precision numbers
(if used) that could be scrolled across a carriage return

IF (J < 4) THEN
PRINT #3, hvalue; ", ";

ELSE
PRINT #3, hvalue; ",

J=0
END IF

NEXT i
PRIM'i #3,
END SUB

SUB SetSwitchECtoLC STATIC
SHARED SwECtoLCSetPt
PRINT "Set Exponential Characteristic (EC) Default to Linear

Characteristic (LC):"
PRINT : Typical Values"
PRINT "rhox=Sx/(3 Sa) beta=-(b dx) [0.5(l-rhox)]=pl(beta)/pO(beta)"
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PRINT " -or+ 2E-6 +or- 1.2E-5 0.500001 or 0.499999"
PRINT " -or+ 2.5E-4 +or- 5.OE-4 0.50004167 or 0.49995833"
PRINT " -or+ 0.32 +or- 2.1 0.66 or 0.34 "
PIINT "(beta <= 2) insures (ABS(Sx) < Sa) and No LC Fixup is used"
PRINT
PRINT "Current Default EC to LC Method when ABS(beta) <= =;
PRINT USING "##.### .... ; SwECtoLCSetPt
INPUT " Change This ? (Y/N): ", a$
aS = UCASE$(LEFT$(LTRIM$(a$), 1))
IF a$ = "Y" THEN

DO
INPUT "New Magnitude of beta <= 2 for EC Default to LC <= ",

SwECtoLCSetPt
LOOP UNTIL SwECtoLCSetPt <= 2!
PRINT USING ## # ## ; SwECtoLCSetPt;
PRINT " Confirmed.": SLEEP (2)

END IF
END SUB

SUB StepDD (Jin, Jout, Sa, dx, Sigma, mu, Fa) STATIC
SHARED fixup%
eps = Sigma * dx / ABS(mu)
a = eps / 2
Jout = (Jin * (1 - a) + SGN(mu) * Sa * dx) / (1 + a)

'balance equation combined with diamond difference assumption
IF fixup% AND (Jout / mu < 0) THEN

Jout = 0 'negative flux fixup
Fa = (Sa + ABS(Jin) / dx) / Sigma 'conservation by balance

equation
ELSE

Fa = (Jin + Jout) / (2 * mu) 'auxiliary equation (diamond
diff)
END IF
Fl = Jin / mu
Fr = Jout / mu
CALL Mom0StepCheck(Fl, Fr, Fa, eps, Sa, dx, mu)
END SUB

SUB StepEC (Sigma, DeltaX, mu, Fl, Sa, Sx, Fr, Fa, Fx) STATIC
SHARED SwECtoLCSetPt, SwitchEC%, pi
'Exponential Characteristic Spatial Quadrature
DIM pe(-1 TO 3), pb(-l TO 3), pbee(-l TO 3)
eps = Sigma * DeltaX / ABS(mu)
GOSUP RootSolveBeta
'Compute Walters functions
I Note p(3 ) values are not required in this scheme
CALL makeP(pe(, eps)
CALL makeP(pb(, ABS(beta))
CALL makeP(pbee(, ABS((beta - eps)))
'If beta is <0, use transformations of Walters p() functions to avoid
I iterations of negative arguments in MakeP SUB
SELECT CASE beta

CASE IS >= 0
CASE ELSE

Be = EXP(ABS(beta))
p0 = pb(0): pl = pb(l): p2 = pb(2)
pb(0) = p0 Be
pb(l) = (p0 - pl) * Be
pb(2) = (pO - 2 * pl + p2) * Be

END SELECT
'Note set pbee(0)=( pO(beta-eps) exp(-eps) ), etc
'If (beta - eps) is <0, again use transformations of Walters functions,
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I and note pbee(l), pbee(2) are not currently needed!
SELECT CASE (beta - eps)

CASE IS >= 0
pbee(O) = pbee(O) * pe(-l)
'NOT NEEDED: pbee(l) = pbee(l) * pe(-l)

pbee(2) = pbee(2) * pe(-l)
CASE ELSE

Be = EXP(ABS(beta - eps))
pO = pDee(0)
pbee(0) = (p0 * Be) * pe(-l)
'NOT NEEDED: pl = pbee(l): p2 = pbee(2)

pbee(l) = ((p0  - pl) * Be) * pe(-l)
pbee(2) = ((p0 - 2 * pl + p2 ) * Be) * pe(-l)

END SELECT
'Contributions from Entering Flux (Fl)
Frl = F1 * pe(-l)
Fal = F1 * pe(0)
Fxl = 3 * Fl * eps * (pe(2) - pe(l))
'Contributions from sources
SELECT CASE Sa

CASE IS > 0
GOSUB ECQuadrature

CASE 0
Frs = 0
Fas = 0
Fxs = 0

END SELECT
Fr = Frl + Frs
Fa = Fal + Fas
Fx = Fxl + Fxs
CALL Mom0StepCheck(Fl, Fr, Fa, eps, Sa, DeltaX, mu)
CALL MomlStepCheck(Fl, Fr, Fa, Fx, eps, Sx, DeltaX, mu)
EndofEC:
EXIT SUB

RootSolveBeta:
SELECT CASE Sa

CASE IS <> 0
rhox = Sx / (3 * Sa)
ro = .5 * (1 - rhox)

CASE ELSE
rhox = 0
ro = .5

END SELECT
'Determine first guess
SELECT CASE ro

CASE IS < 0!
ro = .001
beta0 = -1000

CASE IS > 1!
ro = .999
beta0 = 1000

CASE IS = .5
beta0 = 0f

CASE IS >= .77
beta0 = 1 / (1 - ro)

CASE IS > .23
beta0 = 12 / pi * TAN'((ro - .5) * pi)

CASE IS <= .23
beta0 = -1 / ro

END SELECT
'Rootsolve for beta = -(b dx) using Newton's Method if beta0 is above
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I switchpoint to LC (where beta-0 and closely approximates LC with
Sx<<Sa)
SELECT CASE ABS(beta0)

CASE 0
beta = beta0

CASE IS > SwECtoLCSetPt
betatol = .00001
GOSUB LoopNewton

CASE ELSE
SwitchEC% = True
CALL StepLC(Sigma, DeltaX, mu, Fl, Sa, Sx, Fr, Fa, Fx)
GOTO EndofEC

END SELECT
RETURN

LoopNewton:
icount = 0
DO

icount = icount + 1
beta = beta0 - (Gx(beta0, ro) / DdxG(beta0))
'PRINT ro; " "; icount; " .; betaO; " .; beta
correct% = ((ABS(beta - betaC) / (ABS(beta0))) < betatol)
IF NOT correct% THEN beta0 = beta

LOOP UNTIL (correct%) OR (icount >= 1001)
IF (icount >= 1001) THEN

PRINT : PRINT "Newton Iteration Loop in StepEC Exceeded 1000
iterations"

PRINT "Execution Halted.": PRINT
STOP

END IF
RETURN

ECQuadrature:
'Compute coefficient a (from S(x) = a exp(b x)) and other multipliers
a = Sa / pb(C)

-R * De]laX / ABS(mu)
Ca = cR / eps
Cxl = 3 * Ca * beta
Cx2 = 3 * Ca / eps
'Flux contributions from sources
Frs = cR * pbee(0)
Fas = Ca * (pb(0) - pbee(0))
Fxs = (Cxl * (pb(2) - pb(l))) + (Cx2 * (2 * pb(0) - (eps + 2) *

pbee (0)))
RETURN
END SUB

SUB StepLA (Sigmh, DeltaX, mu, Fl, Sa, Sx, Fr, Fa, Fx) STATIC
'Constrained Linear Characteristic Spatial Quadrature
DIM plt(-l TO 3), pe(-l TO 3), pt(-l TO 3)
eps = Sigma * DeltaX / ABS(mu)
'Contributions from Entering Flux (Fl)
CALL makeP(pe(), eps)
Frl = Fl * pe(-l)
Fal = Fl * pe(0)
Fxl = 3 * Fl * (pe(0) - 2 * pe(l))
'Contributions from sources
SELECT CASE Sa

CASE IS > 0
GOSUB ConstrainedLinearSourceQuadrature

CASE 0
Frs = 0
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Fas = 0
Fxs = 0

END SELECT
Fr = Frl + Frs
Fa = Fal + Fas
Fx = Fxl + Fxs
CALL Mom0StepCheck(Fl, Fr, Fa, eps, Sa, DeltaX, mu)
CALL MomlStepCheck(Fl, Fr, Fa, Fx, eps, Sx, DeltaX, mu)
EXIT SUB

ConstrainedLinearSourceQuadrature:
a = Sa * DeltaX / mu
x = Sx * DeltaX / mu
SELECT CASE Sx
CASE -Sa TO Sa '"WedgeLin"

Frs = (a - x) * pe(0) + 2 * x * pe(1)
Fas = (a - x) * pe(1) + x * pe(2)
Fxs = 3 * (a - x) * (pe(l) - pe(2)) + x * (3 * pe(2) - 2 * pe(3))

CASE -3 * Sa TO -Sa '"WedgeNeg"
rho = ABS(Sx) / (3 * Sa)
'PRINT "WedgeNeg", rho
tau = (1 - rho) * 1.5
CALL makeP(pt(, eps * tau)
CALL makeP(plt(), eps * (1 - tau))
Frs = 2 * a * plt(-l) * (pt(0) - pt(1))
Fas = 2 * a * (1 - tau) * plt(0) * (pt(0) - pt(1))
Fas = Fas + a * tau * (2 * pt(1) pt(2))
Sum = (1 - tau) * (pt(0) - pt(1)) * (plt(0) - 2 * (1 - tau) *

plt(1))
Sum = Sum - tau * (1 - 2 *tau) *pt(l)
Sum = 6 * Sum + 3 * tau * (1 - 4 *tau) * pt(2) + 2 *tau ^ 2 *

pt(3)
Fxs = a * Sum

CASE Sa TO 3 * Sa '"WedgePos
rho = ABS(Sx) / (3 * Sa)
'PRINT "WedgePos", rho
tau = (1 - rho) * 1.5
CALL makeP(pt(), eps * tau)
Frs = 2 * a * pt(1)
Fas = a * tau * pt(2)
Fxs = a * tau * (3 * pt(2) - 2 *tau* pt(3))

END SELECT
RETURN
END SUB

SUB StepLC (Sigma, DeltaX, mu, Fl, Sa, Sx, Fr, Fa, Fx) STATIC
'Linear Characteristic Spatial Quadrature
DIM plt(-1 TO 3), pe(-l TO 3), pt(-1 TO 3)
eps = Sigma * DeltaX / ABS(mu)
'Contributions from Entering Flux (Fl)
CALL makeP(pe), eps)
Frl = Fl * pe(-l)
Fal = Fl * pe(0)
Fxl = 3 * F1 * (pe(0) - 2 * pe(l))
'Contributions from sources
SELECT CASE Sa

CASE IS > 0
a = Sa * DeltaX / mu
x = Sx * DeltaX / mu
Frs = (a - x) * pe(0) + 2 * x * pe(l)
Fas = (a - x) * pe(l) + x * pe(2)
Fxs = 3 * (a - x) * (pe(l) - pe(2)) + x * (3 * pe(2) 2 * pe(3))
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CASE 0
Frs = 0
Fas = 0
Fxs = 0

END SELECT
Fr = Fri + Frs
Fa = Fal + Fas
Fx = Fxl + Fxs
CALL MomOStepCheck(Fl, Fr, Fa, eps, Sa, DeltaX, mu)
CALL MomlStepCheck(Fl, Fr, Fa, Fx, eps, Sx, DeltaX, mu)
END SUB

SUB StepLN (Sigma, DeltaX, mu, Fl, Sa, Sx, Fr, Fa, Fx) STATIC
'Linear Nodal Spatial Quadrature
DIM pe(-l TO 3)
eps = Sigma * DeltaX / ABS(mu)
'Contributions from Entering Flux (Fl)
CALL makeP(pe(), eps)
Fri =Fl * pe(-l)
Fal = Fl * pe(0)
Fxl = 3 * Fl * (pe(0) - 2 * pe(l))
'Contributions from sources
SELECT CASE Sa

CASE IS > 0
GOSUB LNLinearSourceQuadrature

CASE 0
Frs = 0
Fas = 0
Fxs = 0

END SELECT
Fr = Fri + FL-s
Fa = Fal+ -a
Fx = Fx2' + Fxs
CALL M-,nCStepCheck(Fl, Fr, Fa, eps, Sa, DeltaX, mu)
CALL >.iomlStepCheck(Fl, Fr, Fa, Fx, eps, Sx, DeltaX, mu)
EXIT SUB

LtLLinearSourceQuadrature:
a = Sa * DeltaX Imu

x = Sx * DeitaX /mu
'Always use method "WedgeLin"
'Note -- fixup by scalar flux rotation may be used in main program
Frs = (a - x) * pe(0) + 2 *x * pe(l)
Fas = (a - x) * pe(l) + x *pe(2)

Fxs = 3 * (a - x) * (pe(l) -pe(2)) + x * (3 * pe(2) -2 * pe(3))
R ETURN
END SUB

SUB StepSA (Sigma, DeltaX, mu, Fl, Sa, Sx, Fr, Fa, Fx) STATIC
'Constrained Step Characteristic Spatial Quadrature
DIM plr(-l TO 3), pe(-l TO 3), pr(-l To 3)
eps = Sigma * DeltaX / ABS(mu)
'Contributions from Entering Flux (Fl)
CALL makeP(pe(), eps)
Frl = Fl * pe(-l)
Fal z Fl * pe(0)
Fxl = 3 * Fl* (pe(0) - 2 * pe(l))
'Contributions from sources
SELECT CASE Sa

CASE IS > 0
GOSUB ConstrainedStepSourceQuadrature

CASE 0
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Frs = 0
Fas = 0
Fxs = 0

END SELECT
Fr = Frl + Frs
Fa = Fal + Fas
Fx = Fxl + Fxs
CALL MomOStepCheck(Fl, Fr, Fa, eps, Sa, DeltaX, mu)
CALL MomlStepCheck(Fl, Fr, Fa, Fx, eps, Sx, DeltaX, mu)
EXIT SUB

ConstrainedStepSourceQuadrature:
a = Sa * DeltaX / mu
rho = ABS(Sx) / (3 * Sa)

SELECT CASE Sx
CASE 0 TO 3 * Sa '"StepPos"

CALL makeP(plr), eps * (1 - rho))
Frs = a * plr(0)
Fas = a * (1 - rho) * plr(l)
Fxs = 3 * a * (1 - rho) * (plr(l) - (1 - rho) * plr(2))

CASE -3 * Sa TO 0 '"StepNeg"
CALL makeP(plro, eps * (1 - rho))
CALL makeP(pr(, eps * rho)
Frs = a * pr(-l) * plr(0)
Fas = a * (rho * pr(0) * plr(O) + (1 - rho) * plr(l))
Sum = (I - rho) * ((1 - 2 * rho) * plr(l) - (1 - rho) * plr(2))
Sum = Sum + rho * (pr(0) - 2 * rho * pr(l)) * plr(0)
Fxs = 3 * a * Sum

END SELECT
RETURN
END SUB

SUB StepSC (Sigma, DeltaX, mu, Fl, Sa, Sx, Fr, Fa, Fx) STATIC
'Step Characteristic Spatial Quadrature
DIM plr(-l TO 3), pe(-i TO 3), pr(-l TO 3)
eps = Sigma * DeltaX / ABS(mu)
'Contributions from Entering Flux (Fl)
CALL makeP(pe(, eps)
Frl = Fl * pe(-l)
Fal = Fl * pe(0)
'Contributions from sources
SELECT CASE Sa

CASE IS > 0
a = Sa * DeltaX / ABS(mu)
Frs = a * pe(0)
Fas = a * pe(l)

CASE 0
Frs = 0
Fas = 0

END SELECT
Fr = Frl + Frs
Fa = Fal + Fas
Fx = 0
CALL Mom0StepCheck(Fl, Fr, Fa, eps, Sa, DeltaX, mu)
END SUB
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